Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Singularity robust inverse dynamics of planar 2-RPR parallel manipulators
Date
2004-07-01
Author
Ider, SK
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
265
views
0
downloads
Cite This
In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.
Subject Keywords
Mechanical Engineering
URI
https://hdl.handle.net/11511/64290
Journal
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
DOI
https://doi.org/10.1243/0954406041319527
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Vibration fatigue analysis of structures installed on air platforms
Eldoğan, Yusuf; Ciğeroğlu, Ender; Department of Mechanical Engineering (2012)
Although a component satisfies all operating static requirements, failures can still occur due to vibration induced fatigue. Vibration induced fatigue is a frequent phenomenon, in cases where the natural frequencies of the structures are excited by the loading. Hence, the methods which consider all dynamic characteristic of the structure should be used to obtain accurate fatigue life predictions. These methods in frequency domain are called vibration fatigue methods which give accurate, reliable and fast re...
Modeling and control of constrained flexible joint parallel manipulators
Oğan, Osman Can; İder, Kemal; Department of Mechanical Engineering (2010)
The purpose of the thesis is to achieve a hybrid force and motion control method of parallel manipulators working in a constrained environment, in the presence of joint flexibility that occurs at the actuated joints. A flexible joint is modeled and the equations of motion of the parallel manipulator are derived by using the Lagrange formulation. The structural damping of the active joints, viscous friction at the passive joints and the rotor damping are also considered in the model. It is shown that in a fl...
Optimum Profile Modifications for the Minimization of Dynamic Transmission Error
ÖZTÜRK, VEYSEL YALIN; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2014-08-28)
An optimization study is performed target being the reduction of dynamic transmission error (DTE) for a selected operational range, where the operating torque and speed ranges are defined. For this purpose, two different models, i.e. a single degree of freedom (SDOF) lumped gear dynamics model and a multi-degree of freedom (MDOF) lumped model of a gear pair which is combined with shaft and bearing dynamics are employed. The differences between the optimization results obtained through loaded static transmis...
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
Vibration induced stress and accelerated life analyses of an aerospace structure
Özsoy, Serhan; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2006)
Fatigue failure of metallic structures operating under dynamic loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure̕s dynamic characteristics and varying loadings. Therefore, experimental, numerical or a combination of both methods are used for fatigue evaluations. Fatigue failure can occur on systems and platforms as well as components to be mounted on the platform. In this thesis, a helicopter̕s Missile W...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ider, “Singularity robust inverse dynamics of planar 2-RPR parallel manipulators,”
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
, pp. 721–730, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64290.