Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Turbine blade shape aerodynamic design using artificial intelligence
Date
2005-06-09
Author
Oksuz, Ozhan
Akmandor, Ibrahim Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
This paper describes a fast, efficient, robust, and automated design method used to aerodynamically optimize 3D gas turbine blade shapes implementing artificial intelligence. The design objectives are maximizing the aerodynamic efficiency and torque so as to reduce the weight and size and cost of the gas turbine engine. The procedure described here will allow a rapid, practical and low cost design that will answer the need of gas turbine industry. A 3-Dimensional steady Reynolds Averaged Navier Stokes solver is coupled with an automated unstructured grid generation tool. The solver is verified using two well known test cases. Blade geometry is modeled by 36 design variables plus the number of blades variable in a row. A genetic algorithm is used for global optimization purposes. One of the test cases is selected as the baseline and is modified by the design process. It was found that the efficiency can be improved from 83.9% to 85.9%, and the torque can be improved as much as 7.6%. The flow field investigations indicate enhanced secondary flow characteristics of the blade passage.
Subject Keywords
Optimization
,
Algorithms
URI
https://hdl.handle.net/11511/64405
DOI
https://doi.org/10.1115/gt2005-68094
Collections
Department of Aerospace Engineering, Conference / Seminar