Free and forced vibration of cross-ply laminated composite shallow arches

1997-04-01
Khdeir, AA
Reddy, JN
A model for the dynamic behavior of a laminated composite shallow arch is developed from shallow shell theory. Linear equations of motion are derived for thin, moderately thick and thick arches. Free vibration of the arch is explored and exact natural frequencies of the third-order, second-order, first-order and classical arch theories are determined for various boundary conditions. A generalized modal approach is presented to solve the dynamic response of cross-ply laminated arches with arbitrary boundary conditions and for arbitrary loadings. The Poisson effect and rotary inertia are incorporated in the formulation of the arch constitutive equation, in the analytical approaches and in the numerical results. (C) 1997 Elsevier Science Ltd.
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

Suggestions

Finite rigid sets in curve complexes of nonorientable surfaces
Ilbira, Sabahattin; Korkmaz, Mustafa (Springer Science and Business Media LLC, 2020-06-01)
A rigid set in a curve complex of a surface is a subcomplex such that every locally injective simplicial map from the set into the curve complex is induced by a homeomorphism of the surface. In this paper, we find finite rigid sets in the curve complexes of connected nonorientable surfaces of genus g with n holes for g + n not equal 4.
FREE-VIBRATION ANALYSIS OF LAMINATED COMPOSITE TRUNCATED CIRCULAR CONICAL SHELLS
Kayran, Altan (1990-07-01)
An analysis is presented for the free vibration characteristics of isotropic and laminated composite truncated circular conical shells including transverse shear deformation. All components of translatory and rotatory inertia are included. The applicability of linear shell theory due to Reissner is assumed, and governing equations are solved for the natural frequencies and mode shapes by using a combination of modal iteration and transfer matrix approach for different boundary conditions. Natural frequencie...
Dynamic response of antisymmetric cross-ply laminated composite beams with arbitrary boundary conditions
Khdeir, AA (1996-01-01)
An analytical solution of the classical, first- and third-order laminate beam theories is developed to study the transient response of antisymmetric cross-ply laminated beams with generalized boundary conditions and for arbitrary loadings. A general modal approach, utilizing the state form of the equations of motion and their biorthogonal eigenfunctions, is presented to solve the equations of motion of beams with arbitrary boundary conditions. The results obtained using the higher-order theory of Reddy (HOB...
Forced vibration analysis of generally laminated composite beams using domain boundary element method
Ahmed, Zubair; Dağ, Serkan; Department of Mechanical Engineering (2018)
Forced dynamic response of generally laminated composite beam is analyzed by boundary element method. Static fundamental solutions are used as weight functions in the weighted residual statements. The use of static fundamental solutions gives rise to a new formulation named as Domain Boundary Element Method. Displacement field of the generally laminated composite beam is written in accordance with first order shear deformation theory and equations of motion are derived using Hamilton’s principle. Developed ...
Free-Vibration Analysis of Ring-Stiffened Branched Composite Shells of Revolution
Kayran, Altan (American Institute of Aeronautics and Astronautics (AIAA), 2010-4)
Application of the multisegment numerical integration technique is extended to the free-vibration analysis of macroscopically anisotropic filament-wound branched shells of revolution with ring stiffeners, considering the variation of the thickness and winding angle. The solution procedure is based on a modified-frequency trial method, which processes on the numerically integrated transformed fundamental shell equations that are obtained in terms of finite exponential Fourier transform of the fundamental she...
Citation Formats
A. Khdeir and J. Reddy, “Free and forced vibration of cross-ply laminated composite shallow arches,” INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, pp. 1217–1234, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64429.