Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Hamiltonian for a particle in a magnetic field on a curved surface in orthogonal curvilinear coordinates
Download
index.pdf
Date
2016-08-19
Author
Shikakhwa, M. S.
Chair, N.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
3
downloads
The Schrodinger Hamiltonian of a spin-less particle as well as the Pauli Hamiltonian with spin-orbit coupling included of a spin one-half particle in electromagnetic fields that are confined to a curved surface embedded in a three-dimensional space spanned by a general Orthogonal Curvilinear Coordinate are constructed. A new approach, based on the physical argument that upon squeezing the particle to the surface by a potential, then it is the physical gauge-covariant kinematical momentum operator (velocity operator) transverse to the surface that should be dropped from the Hamiltonian(s). In both cases, the resulting Hermitian gauge-invariant Hamiltonian on the surface is free from any reference to the component of the vector potential transverse to the surface, and the approach is completely gauge-independent. In particular, for the Pauli Hamiltonian these results are obtained exactly without any further assumptions or approximations. Explicit covariant plug-and-play formulae for the Schrodinger Hamiltonians on the surfaces of a cylinder, a sphere and a torus are derived.
Subject Keywords
Quantum mechanics on curved surfaces
,
Pauli Hamiltonian on a curved surface
,
Spin-orbit coupling
,
Geometric momentum
URI
https://hdl.handle.net/11511/64441
Journal
PHYSICS LETTERS A
DOI
https://doi.org/10.1016/j.physleta.2016.06.024
Collections
Engineering, Article