Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimating Flow Patterns and Frictional Pressure Losses of Two-Phase Fluids in Horizontal Wellbores Using Artificial Neural Networks
Date
2009-01-01
Author
Ozbayoglu, E. M.
Ozbayoglu, M. A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
Underbalanced drilling achieved by gasified fluids is a very commonly used technique in many petroleum-engineering applications. This study estimates the flow patterns and frictional pressure losses of two-phase fluids flowing through horizontal annular geometries using artificial neural networks rather than using conventional mechanistic models. Experimental data is collected from experiments conducted at METU-PETE Flow Loop as well as data from literature in order to train the artificial neural networks. Flow is characterized using superficial Reynolds numbers for both liquid and gas phase for simplicity. The results showed that artificial neural networks could estimate flow patterns with an accuracy of 5%, and frictional pressure losses with an error less than 30%. It is also observed that proper selection of artificial neural networks is important for accurate estimations.
Subject Keywords
Fuel Technology
,
Geotechnical Engineering and Engineering Geology
,
Energy Engineering and Power Technology
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/64575
Journal
PETROLEUM SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/10916460701700203
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Pressure Loss at the Bit While Drilling with Foam
Ozbayoglu, E. M. (Informa UK Limited, 2009-01-01)
Foam is one of the most frequently used drilling fluids at underbalanced drilling operations. As foam flows, due to the pressure drop, a volumetric expansion is observed, which causes the foam quality to increase in the same direction with flow. Flow of foams through circular pipes and annular geometries are well studied. Interestingly, although one of the major sources of pressure drop is at the bit, there have been few studies of this subject for foams. Many drilling parameters including hole cleaning cap...
Using foam in horizontal well drilling: A cuttings transport modeling approach
Ozbayoglu, ME; Miska, SZ; Reed, T; Takach, N (Elsevier BV, 2005-04-30)
Foam is a frequently used compressible fluid in drilling applications. Cuttings transport with foam has been a focus of interest for years. Few studies have been conducted on vertical well configuration and successfully applied. However, less is known about the performance of foam in highly inclined and horizontal wells. In this study, a layered model is developed for describing cuttings transport in horizontal wells. Due to the presence of a cuttings bed, generalized rheological model parameters for foam a...
Rheological evaluation of polymers as drilling fluids
Kök, Mustafa Verşan (Informa UK Limited, 2003-01-01)
Polymers are recently found and still developing materials to overcome some drilling problems where conventional drilling fluids are not satisfactory enough. Simply, they are the best materials to use since they are non-toxic and do not cause serious environmental problems. In addition, polymeric drilling fluids may have properties such as better carrying capacity, less fluid loss, and thinner filtration cake depending on their composition and concentration. In this research, rheological parameters of two d...
Empirical correlations for estimating filtrate volume of water based drilling fluids
Ozbayoglu, Evren; Gunes, Cagri; Apak, Esat C.; Kök, Mustafa Verşan; Iscan, A. Gurkan (Informa UK Limited, 2005-03-01)
Standard American Petroleum Institute (API) filter press is generally used for identifying the filtrate volume of drilling fluids and works only at very low pressures. In fact, during a drilling operation, at downhole conditions, the pressures encountered are significantly higher than what is used during standard API filter press tests. A relationship between the well-known fluid properties and the filtrate volume test is developed. In this study, experiments have been conducted for different water-clay mix...
Sensitivity Analysis of Major Drilling Parameters on Cuttings Transport during Drilling Highly-inclined Wells
Ozbayoglu, E. M.; Miska, S. Z.; Takach, N.; Reed, T. (Informa UK Limited, 2009-01-01)
In this study, a layered cuttings transport model is developed for high-angle and horizontal wells, which can be used for incompressible non-Newtonian fluids as well as compressible non-Newtonian fluids (i.e., foams). The effects of major drilling parameters, such as flow rate, rate of penetration, fluid density, viscosity, gas ratio, cuttings size, cuttings density, wellbore inclination and eccentricity of the drillsting on cuttings transport efficiency are analyzed. The major findings from this study are,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. M. Ozbayoglu and M. A. Ozbayoglu, “Estimating Flow Patterns and Frictional Pressure Losses of Two-Phase Fluids in Horizontal Wellbores Using Artificial Neural Networks,”
PETROLEUM SCIENCE AND TECHNOLOGY
, pp. 135–149, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64575.