Low-temperature chemical synthesis of lanthanum monoaluminate

Taspinar, E
Tas, AC
One of the promising candidates for ferroelectric substrate materials, lanthanum monoaluminate (LaAlO3), was successfully synthesized by two separate chemical powder preparation techniques: (i) homogeneous precipitation from aqueous solutions containing urea (CH4N2O) in the presence of nitrate salts, and (ii) self-propagating combustion synthesis from aqueous solutions containing CH4N2O and the respective nitrate salts of lanthanum and aluminum. The submicrometer, spherical-like particles of the precursors were completely converted to pure LaAlO3 at 850 degrees C in the homogeneous precipitation route, and the same conversion temperature was observed to be 750 degrees C, which becomes the lowest temperature ever reported for the powder synthesis of a pure LaAlO3 phase. The materials were characterized by powder X-ray diffractometry, simultaneous thermogravimetric/differential thermal analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Structural refinements by Rietveld analysis showed that LaAlO3 was isostructural with BaTbO3 and had the space group R-3c, in contrast to the previously assumed space group of R-3m for this phase. The atomic positions in the structure of LaAlO3 were refined and presented for the first time, with respect to the present space group.


Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties
Yildirim, Ozlem Altintas; Ünalan, Hüsnü Emrah; Durucan, Caner (Wiley, 2013-03-01)
Synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles through precipitation method has been reported. The synthesis was conducted at room temperature and no subsequent thermal treatment was applied. ZnO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fourier transmission infrared spectroscopy (FTIR), and ultraviolet-visible (UVVis) spectroscopy. Detailed crystallographic investigation was accomplished through ...
Enhanced methylene blue removal efficiency of TiO2 embedded porous glass
Ertus, E. Burak; Vakifahmetoglu, Cekdar; Öztürk, Abdullah (Elsevier BV, 2021-02-01)
A porous glass (PG) embedded with titanium dioxide (TiO2) was produced via impregnation of the PG with Titanium (IV) Isopropoxide solution followed by crystallization. N-2 sorption analyses revealed that the specific surface area (SSA) and total pore volume of the PG reached to 358 m(2)/g and 0.370 cm(3)/g, respectively. The adsorption capacity of methylene blue (MB) for the glasses was measured in the dark, instead the photocatalytic MB removal efficiency was evaluated by the degradation of MB under UV lig...
Combustion synthesis of calcium phosphate bioceramic powders
Tas, AC (Elsevier BV, 2000-12-01)
Calcium phosphate (hydroxyapatite and tri-calcium phosphate) bioceramics closely resembling, in chemical composition, those found in vivo in human bones have been synthesized by using novel synthetic body fluid solutions via the self-propagating combustion synthesis (SPCS) method. Powder characterization was performed by XRD: ICP-AES, FTIR and SEM.
Polystyrene-organoclay nanocomposites prepared by melt intercalation, in situ, and Masterbatch methods
Yılmazer, Ülkü; Ozden, G (Wiley, 2006-06-01)
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS-organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin-screw extruder. The structure and mechanical properties of the nanocomposites were examined. X-ray diffraction (XRD) ...
Synthesis and Characterization of 2-Hydroxyethyl Methacrylate (HEMA) and Methyl Methacrylate (MMA) Copolymer Used as Biomaterial
Vargun, Elif; SANKIR, MEHMET; Aran, Bengi; DEMİRCİ SANKIR, NURDAN; Usanmaz, Ali (Informa UK Limited, 2010-01-01)
A series of poly(methyl methacrylate-co-hydroxyethyl methacrylate) (PMMA-co-PHEMA), copolymers were synthesized by an emulsion polymerization technique. Copolymer compositions were determined by FT-IR and 1H-NMR spectroscopy. It was found that comonomer ratios used in the recipes were comparable within the actual copolymers. Glass transition temperatures (Tg) of PMMA-co-PHEMA copolymers were varied from 119 degrees C to 100 degrees C by increasing HEMA content. Thermogravimetric analysis showed that the cop...
Citation Formats
E. Taspinar and A. Tas, “Low-temperature chemical synthesis of lanthanum monoaluminate,” JOURNAL OF THE AMERICAN CERAMIC SOCIETY, pp. 133–141, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64613.