Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

2016-12-09
Jayaweera, H. M. P. C.
Muhtaroglu, Ali
A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 k Omega, 3.5 k Omega and 5 k Omega loads respectively using 0.2 V input.

Suggestions

Fully Integrated Ultra-Low Voltage Step-up Converter with Voltage Doubling LC-Tank for Energy Harvesting Applications
Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroglu, Ali (2015-12-04)
This paper reports the design, fabrication, and validation of a novel integrated interface circuit for ultra-low voltage step up converter in 0.18 mu m CMOS technology. The circuit does not use off-chip components. Fully integrated centre-tap differential inductors are introduced in the proposed LC oscillator design to achieve 38% area reduction compared to the use of four separate inductors. The efficiency of the system is hence enhanced through the elimination of clock buffer circuits traditionally utiliz...
Broadband spectral splitting of white light via 2D diffractive optical elements
Başay, Yalın; Yüce, Emre (The Scientific and Technological Research Council of Turkey, 2018-10-01)
An effective way of increasing the efficiency of solar cells is to spectrally split sunlight into several frequencies and absorb each frequency using appropriate photovoltaic materials. In this study, we establish a method to show spectral splitting of broadband solar light via iteratively optimized diffractive optical elements. We develop an algorithm in order to calculate 2D holographic patterns that focus two different frequencies to designated positions.
A fully integrated autonomous power management system with high power capacity and novel MPPT for thermoelectric energy harvesters in IoT/wearable applications
Tabrizi, Hamed Osouli; Jayaweera, H. M. P. C.; Muhtaroglu, Ali;( Abstracts: This paper reports a fully integrated autonomous power management system for thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based on simulations, which is the highest output current for a fully integrated converter reported in the literature for ultra-low voltage applications, to the best knowledge of the authors. Regulated 1 V output can be achieved for load range >2 k Omega, and input voltage range >140 mV. The circuit has been implemented in UMC-180nm standard CMOS technology and simulated.; 2017-11-17)
This paper reports a fully integrated autonomous power management system for thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based on simulations, which is the highest output current for a fully integrated converter reported in the literature for ultra-low voltage applications, to the best knowl...
Fluid model of dc glow discharge with nonlocal ionization source term
Rafatov, İsmail; KUDRYAVTSEV, A. A. (2012-06-29)
We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the fluid framework. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.
Generation of 2-mu J 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm
Pavlova, Svitlana; Rezaei, Hossein; Pavlov, Ihor; Kalaycioglu, Hamit; Ilday, Fatih Omer (Springer Science and Business Media LLC, 2018-10-01)
We report on a simple, robust, femtosecond chirped-pulse-amplification system, based on Er-and Er-Yb-doped fibers, operating at a central wavelength of 1555 nm. The entire system is constructed from commercially available fiber components, except the grating compressor, for easy duplication by other researchers. The laser system produces chirped pulses with up to 4 mu J of pulse energy at 250 kHz. After dechirping, the pulse duration is 410 fs and the pulse energy is reduced to 2 mu J. The repetition rate o...
Citation Formats
H. M. P. C. Jayaweera and A. Muhtaroglu, “Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications,” 2016, vol. 773, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64638.