Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus
Date
2016-01-01
Author
Asumadu-Sarkodie, Samuel
Owusu, Phebe Asantewaa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
222
views
0
downloads
Cite This
Global interest in using biomass feedstock to produce heat and power is increasing. In this study, RETScreen modelling software was used to investigate the feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Weiss Kessel Multicratboiler system with 2 MW capacity using rice straw biomass as fuel and 10 units of RBI (R) CB0500 boilers with 144 kW capacity using natural gas as fuel were selected for the proposed biomass heating system. The total cost of the biomass heating project is US$ 786,390. The project has a pre-tax and after tax internal rate of return (IRR) of 122.70%, simple payback period of 2.54 years, equity payback period of 0.83 year, a net present value of US$ 3,357,138.29, an annual lifecycle savings of US$ 262,617.91, a benefit-cost ratio of 21.83, an electricity cost of $0/kWh and a GHG reduction cost of -204.66 $/tCO(2). The annual GHG emission reduction is 1,283.2 tCO2, which is equivalent to 118 hectares of forest absorbing carbon. The development and adoption of this renewable energy technology will save costs on buying conventional type of heating system and result in a large technical and economic potential for reducing greenhouse gas emissions which will satisfy the sustainable development goals.
Subject Keywords
General Engineering
,
General Computer Science
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/64825
Journal
COGENT ENGINEERING
DOI
https://doi.org/10.1080/23311916.2015.1134304
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Steam reforming of ethanol for hydrogen production using Cu-MCM41 and Ni-MCM41 type mesoporous catalytic materials
Özdoğan, Ekin; Doğu, Timur; Department of Chemical Engineering (2007)
The world’s being alerted to the global warming danger and the depletion of fossil fuel resources, has increased the importance of the clean and renewable hydrogen energy. Bioethanol has high potential to be used as a resource of hydrogen since it is a non-petroleum feedstock and it is able to produce hydrogen rich mixture by steam reforming reactions. Discovery of mesoporous MCM-41 type high surface area silicate-structured materials with narrow pore size distributions (20-100 Å) and high surface areas (up...
Theoretical investigation of a humidification-dehumidification desalination system configured by a double-pass flat plate solar air heater
Yamali, Cemil; Solmus, Ismail (Elsevier BV, 2007-02-05)
The aim of this study is to investigate theoretically the effect of different system operating conditions, types of air heater, and some different design parameters and a weather condition on a solar water desalination system performance under the climatological conditions of Ankara (40 degrees N,33 degrees E), Turkey. For this purpose, a computer simulation program based on the mathematical model is developed by means of MATLAB software. In this simulation program, the fourth order Runge-Kutta method is us...
Fabrication and characterization of single crystalline silicon solar cells
Es, Fırat; Turan, Raşit; Department of Physics (2010)
The electricity generation using photovoltaic (PV) solar cells is the most viable and promising alternative to the fossil-fuel based technologies which are threatening world’s climate. PV cells directly convert solar energy into electrical power through an absorption process that takes place in a solid state device which is commonly fabricated using semiconductors. These devices can be employed for many years with almost no degradation and maintenance. PV technologies have been diversified in different dire...
Development of organic-inorganic composite membranes for fuel cell applications
Erdener, Hülya; Baç, Nurcan; Department of Chemical Engineering (2007)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is t...
Mathematical modeling of thermal decomposition of coal
Guruz, GA; Uctepe, U; Durusoy, T (Elsevier BV, 2004-06-01)
Pyrolysis, as a first step in all thermochemical coal conversion processes, has been investigated in detail over the years in order to evaluate the kinetic data and to establish reliable models for the complex reaction scheme. Since coal pyrolysis is not a single reaction but rather a multiplicity in different time intervals for isothermal pyrolysis, or in different time and temperature intervals for the case of heat-up, any set of parameters cannot be expected to represent data accurately over a wide range...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Asumadu-Sarkodie and P. A. Owusu, “Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus,”
COGENT ENGINEERING
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64825.