On event signal reconstruction in wireless sensor networks

2007-05-18
Atakan, Baris
Akan, Oezguer B.
In Wireless Sensor Networks (WSN), the effective detection and reconstruction of the event signal is mainly based on the regulation of sampling and communication parameters used by the sensor nodes. The aim of this paper is to understand the effect of these parameters on the reconstruction performance of event signal in WSN. Theoretical analysis and results show that with proper selection of sampling and communication parameters, the event signal can be satisfactorily reconstructed at the sink. Furthermore, this study also reveals that the non-uniform and irregular sampling of the event signal outperform the uniform sampling in terms of the reconstruction performance while providing significant energy conservation. Moreover, it is also shown that node density is closely related with the quality.

Suggestions

An Analysis for the Correlation of Coverage and Spatial Resolution for Wireless Sensor Networks
Tomur, Emrah; Erten, Y. Murat (2007-12-10)
In this study, we investigate the interactions between coverage and spatial resolution for cluster-based wireless sensor networks (WSN). We present an approximate probabilistic analysis for the mentioned correlation and verify this analysis by simulation. Our analysis includes the k-coverage case.
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Immune system based distributed node and rate selection in wireless sensor networks
Atakan, Baris; Akan, Ozguer B. (2006-12-13)
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of dense deployed sensor nodes. Due to the dense deployment, since sensor observations are spatially correlated with respect to spatial location of sensor nodes, it may not be necessary for every sensor node to transmit its data. Therefore, due to the resource constraints of sensor nodes it is needed to select the minimum number of sensor nodes to transmit the data to the sink. Furthermore, to achieve the application-...
Immune system-based energy efficient and reliable communication in wireless sensor networks
Atakan, Baris; Akan, Oezguer B. (2006-12-01)
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of densely deployed sensor nodes. Due to the dense deployment, since sensor observations are spatially correlated with respect to location of sensor nodes, it may not be necessary for every sensor node to transmit its data. Therefore, due to the resource constraints of sensor nodes, it is imperative to select the minimum number of sensor nodes to transmit the data to the sink. Furthermore, to achieve the application-s...
Citation Formats
B. Atakan and O. B. Akan, “On event signal reconstruction in wireless sensor networks,” 2007, vol. 4479, p. 558, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64930.