Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fluid flux throughout matrix-fracture interface: Discretizing hydraulic fractures for coupling matrix Darcy flow and fractures non-Darcy flow
Date
2020-01-01
Author
Al-Rbeawi, Salam
Owayed, Jalal F.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
218
views
0
downloads
Cite This
The objective of this paper is focusing deep insights on reservoir fluid flux from a structurally complicated matrix to non-uniformly propagated hydraulic fractures. A hypothetical unconventional reservoir is considered with stimulated and un-stimulated reservoir volume. A Semi-analytical multilinear flow regimes model is developed for pressure distribution by coupling matrix Darcy flow model and hydraulic fracture non-Darcy flow model. Hydraulic fractures are discretized to several segments with a specific fluid flux to these segments. The study has reached to several conclusions such as: fluid flux from SRV matrix to hydraulic fractures may have a significant impact on reservoir performance and discretizing hydraulic fractures to several segments may give different pressure behavior, flow rate, and productivity index than single segment fracture. The novel point presented in this study is presenting a semi-analytical model that couples matrix Darcy flow and hydraulic fracture non-Darcy flow using trilinear dual porosity model and discretizing hydraulic fractures.
Subject Keywords
Energy Engineering and Power Technology
URI
https://hdl.handle.net/11511/64987
Journal
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1016/j.jngse.2019.103061
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Pseudo-steady state inflow performance relationship of reservoirs undergoing multiphase flow and different wellbore conditions
Al-Rbeawi, Salam (Elsevier BV, 2019-08-01)
This paper introduces an integrated approach for the inflow performance relationship of reservoirs that undergo multiphase flow conditions and drained by vertical wells with different wellbore conditions. The main objective is eliminating uncertainties that govern predicting reservoir performance by assuming single phase flow in the porous media. The proposed approach includes developing several models for multiphase flow conditions using PVT data and relative permeability curves. These models are assembled...
Integrated analysis of pressure response using pressure-rate convolution and deconvolution techniques for varied flow rate production in fractured formations
Al-Rbeawi, Salam (Elsevier BV, 2018-03-01)
This paper introduces an integrated analysis for pressure transient behavior of conventional and unconventional multi-porous media reservoirs considering varied flow rate conditions. It focuses on the applications of pressure-rate convolution and deconvolution techniques for analyzing pressure records of homogenous single porous media, double porous media, and triple porous media reservoirs. The tasks covered in this paper are: Deconvloving pressure response, characterizing and developing analytical models ...
Integrated deterministic approaches for productivity index of reservoirs depleted by horizontal wells and undergone multiphase flow conditions
Al-Rbeawi, Salam (Elsevier BV, 2019-04-01)
This paper introduces new integrated approaches for estimating pseudo-steady state productivity index (PI) and shape factor of oil and gas reservoirs drained by horizontal wells and dominated by multiphase flow conditions. These approaches couple PVT data, relative permeability curves, and pressure distribution models during pseudo-steady state flow (PSS). The objective is eliminating the uncertainties of applying single phase flow models and substantially comprising the realistic parameters that govern mul...
Mathematical modeling of steam-assisted gravity drainage
Akın, Serhat (Society of Petroleum Engineers (SPE), 2005-01-01)
A mathematical model for gravity drainage in heavy-oil reservoirs and tar sands during steam injection in linear geometry is proposed. The mathematical model is based on the experimental observations that the steam-zone shape is an inverted triangle with the vertex fixed at the bottom production well. Both temperature and asphaltene content dependence on the viscosity of the drained heavy oil are considered. The developed model has been validated with experimental data presented in the literature. The heavy...
Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor
Boran, Asli; Erkan, Serdar; Özkar, Saim; Eroglu, Inci (Wiley, 2013-04-01)
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an incre...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Al-Rbeawi and J. F. Owayed, “Fluid flux throughout matrix-fracture interface: Discretizing hydraulic fractures for coupling matrix Darcy flow and fractures non-Darcy flow,”
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64987.