Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Fluid flux throughout matrix-fracture interface: Discretizing hydraulic fractures for coupling matrix Darcy flow and fractures non-Darcy flow
Date
2020-01-01
Author
Al-Rbeawi, Salam
Owayed, Jalal F.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
The objective of this paper is focusing deep insights on reservoir fluid flux from a structurally complicated matrix to non-uniformly propagated hydraulic fractures. A hypothetical unconventional reservoir is considered with stimulated and un-stimulated reservoir volume. A Semi-analytical multilinear flow regimes model is developed for pressure distribution by coupling matrix Darcy flow model and hydraulic fracture non-Darcy flow model. Hydraulic fractures are discretized to several segments with a specific fluid flux to these segments. The study has reached to several conclusions such as: fluid flux from SRV matrix to hydraulic fractures may have a significant impact on reservoir performance and discretizing hydraulic fractures to several segments may give different pressure behavior, flow rate, and productivity index than single segment fracture. The novel point presented in this study is presenting a semi-analytical model that couples matrix Darcy flow and hydraulic fracture non-Darcy flow using trilinear dual porosity model and discretizing hydraulic fractures.
Subject Keywords
Energy Engineering and Power Technology
URI
https://hdl.handle.net/11511/64987
Journal
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1016/j.jngse.2019.103061
Collections
Engineering, Article