Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor

2013-04-01
Boran, Asli
Erkan, Serdar
Özkar, Saim
Eroglu, Inci
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an increase in NaBH4 concentration whereas it shows a slight decrease with variation in NaOH concentration. As an important parameter, an increase in the flow rate of feed solution enhances the hydrogen generation rate. This is an important result as it provides an easy control of reaction or hydrogen generation on demand. Copyright (c) 2013 John Wiley & Sons, Ltd.
INTERNATIONAL JOURNAL OF ENERGY RESEARCH

Suggestions

Comparative study of PV/PEM fuel cell hybrid energy system based on methanol and water electrolysis
Budak, Yagmur; DEVRİM, YILSER (Elsevier BV, 2019-01-01)
In this study, we investigated the comparative analysis of a solar-fuel cell hybrid system based on water and methanol electrolysis. The proposed system comprises PV, electrolyzer and proton exchange membrane fuel cell (PEMFC). The hybrid system is designed to supply the hydrogen (H-2) needed of the PEMFC system and also to fulfill the H-2 requirement of other applications. The actual data of solar irradiation of Izmir, Turkey are used in the simulation. The methanol and water electrolyzers were designed fo...
Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity
Bayer, IS; Eroğlu, İnci; Turker, L (Wiley, 2001-03-10)
The photogalvanic effect in electrochemical cells, employing aqueous Methylene blue and Fe(II)/Fe(III) couple electrolyte and nickel-mesh electrodes, were experimentally investigated. Five different standard H-cell configurations were set-up by modifying the electrolyte. Long-term open-circuit Voltage measurements were conducted in order to test the stability of the cells. Light on-off reproducibility experiments were also carried out during lengthy cell operations. By comparing experimental quantum yield w...
Experimental investigation of CO tolerance in high temperature PEM fuel cells
DEVRİM, YILSER; Albostan, Ayhan; Devrim, Huseyin (Elsevier BV, 2018-10-04)
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to th...
Evaluation of hybridsolar-wind-hydrogenenergy system based on methanol electrolyzer
Budak, Yagmur; DEVRİM, YILSER (Wiley, 2020-10-01)
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requ...
PEM fuel cell degradation effects on the performance of a stand-alone solar energy system
ÖZDEN, Ender; Tarı, İlker (Elsevier BV, 2017-05-04)
After comparing fresh and degraded performances of Polymer Electrolyte Membrane (PEM) based components of a hydrogen cycle with the help of computational fluid dynamics simulations, recently established stand-alone solar energy system producing hydrogen for energy storage is investigated focusing on the effects of degradation of fuel cells on the overall performance of the system. A complete model of the system has been developed using TRNSYS, and a degraded PEM Fuel Cell Subsystem has been incorporated int...
Citation Formats
A. Boran, S. Erkan, S. Özkar, and I. Eroglu, “Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor,” INTERNATIONAL JOURNAL OF ENERGY RESEARCH, pp. 443–448, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48537.