Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic modeling and parameter estimation for traction, rolling, and lateral wheel forces to enhance mobile robot trajectory tracking
Date
2015-12-01
Author
BAYAR, Gokhan
Koku, Ahmet Buğra
Konukseven, Erhan İlhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
Studying wheel and ground interaction during motion has the potential to increase the performance of localization, navigation, and trajectory tracking control of a mobile robot. In this paper, a differential mobile robot is modeled in a way that (traction, rolling, and lateral) wheel forces are included in the overall system dynamics. Lateral wheel forces are included in the mathematical model together with traction and rolling forces. A least square parameter estimation process is proposed to estimate the parameters of the wheel forces. In order to implement the proposed methodologies, an experimental setup is used. The setup contains a differentially driven mobile robot, a specially constructed test surface, and a camera system attached at the top of surface for obtaining ground truth. Models having one or more wheel forces are simulated to find the most realistic model. Simulation results are verified by experiments.
Subject Keywords
Control and Systems Engineering
,
Software
,
General Mathematics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/39453
Journal
ROBOTICA
DOI
https://doi.org/10.1017/s0263574714001386
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS
BODUR, M; SEZER, ME (Informa UK Limited, 1993-09-01)
An adaptive self-tuning control scheme is developed for end-point position control of flexible manipulators. The proposed scheme has three characteristics. First, it is based on a dynamic model of a flexible manipulator described in cartesian coordinates, which eliminates the burden and inaccuracy of translating a desired end-point trajectory to joint coordinates using inverse kinematic relations. Second, the effect of flexibility is included in the dynamic model by approximating flexible links with a numbe...
3-D Rigid Body Tracking Using Vision and Depth Sensors
Gedik, O. Serdar; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2013-10-01)
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm,...
Free gait generation with reinforcement learning for a six-legged robot
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (Elsevier BV, 2008-03-31)
In this paper the problem of free gait generation and adaptability with reinforcement learning are addressed for a six-legged robot. Using the developed free gait generation algorithm the robot maintains to generate stable gaits according to the commanded velocity. The reinforcement learning scheme incorporated into the free gait generation makes the robot choose more stable states and develop a continuous walking pattern with a larger average stability margin. While walking in normal conditions with no ext...
COSMO: Contextualized scene modeling with Boltzmann Machines
Bozcan, Ilker; Kalkan, Sinan (Elsevier BV, 2019-03-01)
Scene modeling is very crucial for robots that need to perceive, reason about and manipulate the objects in their environments. In this paper, we adapt and extend Boltzmann Machines (BMs) for contextualized scene modeling. Although there are many models on the subject, ours is the first to bring together objects, relations, and affordances in a highly-capable generative model. For this end, we introduce a hybrid version of BMs where relations and affordances are incorporated with shared, tri-way connections...
Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part II: Analyses of grasp initialization and its vorticity based optimization
Erkmen, Aydan Müşerref; Tekkaya, E (Wiley, 2000-04-01)
Our work focuses on developing methods of determining the optimal preshape of a robot hand closing onto an object in order to achieve at contact a certain stability and manipulability degree based on kinematic considerations. This purposive closing of a preshaped hand should then be kinematically modelled in such a way that impact force patterns on the object can naturally be deduced from the model and be optimized such that upon contacting the object the desired optimum initial conditions of manipulation a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. BAYAR, A. B. Koku, and E. İ. Konukseven, “Dynamic modeling and parameter estimation for traction, rolling, and lateral wheel forces to enhance mobile robot trajectory tracking,”
ROBOTICA
, pp. 2204–2220, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39453.