Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Geometry defeaturing and surface relaxation algorithms for all-hexahedral remeshing
Date
2001-06-20
Author
Karadogan, C
Tekkaya, AE
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
103
views
0
downloads
Cite This
Remeshing is composed of two steps: geometry defeaturing and generation of the new mesh. During the geometry defeaturing, grid or octree based mesh generation techniques requires detection of geometric edges, In this study, a new geometry based edge detection algorithm is presented.
URI
https://hdl.handle.net/11511/65210
Conference Name
7th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2001)
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Part-based data-driven shape interpolation
Aydınlılar, Melike; Sahillioğlu, Yusuf; Department of Computer Engineering (2018)
An active problem in digital geometry processing is shape interpolation which aims to generate a continuous sequence of in-betweens for a given source and target shape. Unlike traditional approaches that interpolate source and target shapes in isolation, recent data-driven approaches utilize multiple interpolations through intermediate database shapes, and consequently perform better at the expense of a database requirement. In contrast to the existing data-driven approaches that consider intermediate shape...
Part-based data-driven 3D shape interpolation
Aydinlilar, Melike; Sahillioğlu, Yusuf (2021-07-01)
An active problem in digital geometry processing is shape interpolation which aims to generate a continuous sequence of in-betweens for a given source and target shape. Unlike traditional approaches that interpolate source and target shapes in isolation, recent data-driven approaches utilize multiple interpolations through intermediate database shapes, and consequently perform better at the expense of a database requirement. In contrast to the existing data-driven approaches that consider intermediate shape...
Modeling of reaction-diffusion transport into a core-shell geometry
King, Clarence C.; Brown, Amelia Ann; Sargın, Irmak; Bratlie, K. M.; Beckman, S. P. (2019-01-01)
Fickian diffusion into a core-shell geometry is modeled. The interior core mimics pancreatic Langerhan islets and the exterior shell acts as inert protection. The consumption of oxygen diffusing into the cells is approximated using Michaelis-Menten kinetics. The problem is transformed to dimensionless units and solved numerically. Two regimes are identified, one that is diffusion limited and the other consumption limited. A regression is fit that describes the concentration at the center of the cells as a f...
3d geometric hashing using transform invariant features
Eskizara, Ömer; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2009)
3D object recognition is performed by using geometric hashing where transformation and scale invariant 3D surface features are utilized. 3D features are extracted from object surfaces after a scale space search where size of each feature is also estimated. Scale space is constructed based on orientation invariant surface curvature values which classify each surface point's shape. Extracted features are grouped into triplets and orientation invariant descriptors are defined for each triplet. Each pose of eac...
Sliding mode control design with time varying sliding surfaces for a class of nonlinear systems
SALAMCİ, METİN UYMAZ; Tombul, G. Serdar (2006-10-06)
This paper presents sliding mode control (SMC) design for a class of nonlinear systems in which the sliding surface is designed to be linear with time varying slope(s). The sliding surface design is based on the frozen-time approach. The nonlinear system is frozen at each operation step resulting in linear time invariant (LTI) model and the sliding surface is designed for the LTI model. The surface slope is updated at each frozen step which gives, in general, a moving sliding surface. The control term, on t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Karadogan and A. Tekkaya, “Geometry defeaturing and surface relaxation algorithms for all-hexahedral remeshing,” Toyohashi, Japan, 2001, p. 161, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65210.