Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
APPLICATION OF 3 NONLINEAR-PROGRAMMING TECHNIQUES IN OPTIMIZING MACHINING CONDITIONS
Date
1992-01-01
Author
ESKICIOGLU, AM
ESKICIOGLU, H
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
Mathematical models used for determining optimal machining conditions are non-linear functions subject to non-linear constraints. In this paper models for unit production cost and unit production time for multi-pass milling operations are developed, taking cutting speed, depth of cut, feed and number of passes as design variables. The problem is then solved by three non-linear programming methods, namely the generalized reduced gradient (GRG) method, the sequential unconstrained minimization technique (SUMT) and the flexible tolerance method. The efficiency of the methods in obtaining the solution is discussed. It is shown through computational experience that their usefulness differs considerably, some parameters in the computer codes used requiring careful selection for the models in question.
Subject Keywords
Mechanical Engineering
,
Industrial and Manufacturing Engineering
URI
https://hdl.handle.net/11511/65258
Journal
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE
DOI
https://doi.org/10.1243/pime_proc_1992_206_072_02
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics
Budak, E.; Erturk, A.; Özgüven, Hasan Nevzat (Elsevier BV, 2006-01-01)
The most important information required for chatter stability analysis is the dynamics of the involved structures, i.e. the frequency response functions (FRFs) which are usually determined experimentally. In this study, the tool point FRF of a spindle-holder-tool assembly is analytically determined by using the receptance coupling and structural modification techniques. Timoshenko's beam model is used for increased accuracy. The spindle is also modeled analytically with elastic supports representing the bea...
Adaptation of turbulence models to a navier-stokes solver
Gürdamar, Emre; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2005)
This thesis presents the implementation of several two-equation turbulence models into a finite difference, two- and three-dimensional Navier-Stokes Solver. Theories of turbulence modeling and the historical development of these theories are briefly investigated. Turbulence models that are defined by two partial differential equations, based on k-? and k-? models, having different correlations, constants and boundary conditions are selected to be adapted into the base solver. The basic equations regarding t...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies
Onder, Erkan; TEKKAYA, AHMET ERMAN (Elsevier BV, 2008-04-01)
This study focuses on the determination of optimum sheet metal forming process and process parameters for various cross sectional workpieces by comparing the numerical results of high-pressure sheet metal forming, hydro-mechanical deep drawing (DD) and conventional DD simulations. Within the range of each cross section, depth, characteristic dimensions ratio and fillet radius have been altered systematically. Steel of types St14 and DC04 have been used as the specimen material in the numerical analyses and ...
A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies
Özşahin, Orkun; Özgüven, Hasan Nevzat (Elsevier BV, 2009-01-01)
Accurate identification of contact dynamics is very crucial in predicting the dynamic behavior and chatter stability of spindle-tool assemblies in machining centers. it is well known that the stability lobe diagrams used for predicting regenerative chatter vibrations can be obtained from the tool point frequency response function (FRF) of the system. As previously shown by the authors, contact dynamics at the spindle-holder and holder-tool interfaces as well as the dynamics of bearings affect the tool point...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. ESKICIOGLU and H. ESKICIOGLU, “APPLICATION OF 3 NONLINEAR-PROGRAMMING TECHNIQUES IN OPTIMIZING MACHINING CONDITIONS,”
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE
, pp. 183–189, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65258.