Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A theory of dropwise condensation at large subcooling including the effect of the sweeping
Download
index.pdf
Date
2002-02-01
Author
Yamali, C
Merte, H
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum.
Subject Keywords
General Engineering
,
Condensed Matter Physics
,
Fluid Flow and Transfer Processes
URI
https://hdl.handle.net/11511/65282
Journal
HEAT AND MASS TRANSFER
DOI
https://doi.org/10.1007/s002310100272
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer
Yildiz, S; Yüncü, Hafit (Springer Science and Business Media LLC, 2004-02-01)
Natural convection heat transfer in annular fin-arrays mounted on a horizontal cylinder was experimentally investigated. An experimental set-up was constructed to investigate heat transfer characteristics of 18 sets of annular fin-arrays mounted on a horizontal cylinder of 24.9-mm diameter in atmospheric conditions. Keeping the fin thickness fixed at 1 mm, fin diameter is varied from 35 mm to 125 mm and fin spacing is varied from 3.6 mm to 31.7 mm. The base-to-ambient temperature difference was also varied ...
Heat transfer effects on the stability of low speed plane Couette-Poiseuille flow
Oezgen, Serkan; Dursunkaya, Zafer; Ebrinc, Ali Asian (Springer Science and Business Media LLC, 2007-10-01)
The stability problem of low-speed plane Couette-Poiseuille flow of air under heat transfer effects is solved numerically using the linear stability theory. Stability equations obtained from two-dimensional equations of motion and their boundary conditions result in an eigenvalue problem that is solved using an efficient shoot-search technique. Variable fluid properties are accounted for both in the basic flow and the perturbation (stability) equations. A parametric study is performed in order to assess the...
Effects of optical design modifications on thermal performance of a highly reflective HfO2/SiO2/TiO2 three material coating
OCAK, M.; Sert, Cüneyt; Okutucu-Ozyurt, T. (Springer Science and Business Media LLC, 2018-02-01)
Effects of layer thickness modifications on laser induced temperature distribution inside three material, highly reflective thin film coatings are studied with numerical simulations. As a base design, a 21 layer coating composed of HfO2, SiO2 and TiO2 layers of quarter wave thickness is considered. First, the laser induced temperature distribution in this base design is obtained. Then the layer thicknesses of the base design are modified and the corresponding temperature distributions in four alternative no...
Ice accretion simulation on multi-element airfoils using extended Messinger model
Özgen, Serkan (Springer Science and Business Media LLC, 2009-01-01)
In the current article, the problem of in-flight ice accumulation on multi-element airfoils is studied numerically. The analysis starts with flow field computation using the Hess-Smith panel method. The second step is the calculation of droplet trajectories and droplet collection efficiencies. In the next step, convective heat transfer coefficient distributions around the airfoil elements are calculated using the Integral Boundary-Layer Method. The formulation accounts for the surface roughness due to ice a...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Yamali and H. Merte, “A theory of dropwise condensation at large subcooling including the effect of the sweeping,”
HEAT AND MASS TRANSFER
, pp. 191–202, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65282.