Fractional incompressible stars

2015-10-01
Bayin, Selcuk S.
Krisch, Jean P.
In this paper we investigate the fractional versions of the stellar structure equations for non radiating spherical objects. Using incompressible fluids as a comparison, we develop models for constant density Newtonian objects with fractional mass distributions and/or stress conditions. To better understand the fractional effects, we discuss effective values for the density and equation of state. The fractional objects are smaller and less massive than integer models. The fractional parameters are related to a polytropic index for the models considered.
ASTROPHYSICS AND SPACE SCIENCE

Suggestions

Sound Velocity in Dense Matter Such as Neutron Stars
Oğurol, Leyla; Tekin, Bayram; Department of Physics (2022-2-11)
Properties of matter at ultra-high density, called dense matter, is an important subject that has been studied theoretically and experimentally in recent years. In a very dense system, a composite matter consisting of nucleons, pions, hadrons would overlap, so the new form of matter constituting quarks and gluons would occur at a baryon density of around ten times the ordinary nuclear density. Such a transition could have appeared in the early universe during the first microsecond of the Big Bang, in the co...
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
Autoparallel orbits in Kerr Brans-Dicke spacetimes
Cebeci, H; Dereli, T; Tucker, RW (2004-01-01)
The bounded orbital motion of a massive spinless test particle in the background of a Kerr Brans-Dicke geometry is analysed in terms of worldlines that are auto-parallels of different metric compatible spacetime connections. In one case the connection is that of Levi-Civita with zero-torsion. In the second case the connection has torsion determined by the gradient of the Brans-Dicke background scalar field. The calculations permit one in principle to discriminate between these possibilities.
Modal analysis of elastic vibrations of incompressible materials using a pressure-stabilized finite element method
Codina, Ramon; Türk, Önder (2022-09-01)
This paper describes a modal analysis technique to approximate the vibrations of incompressible elastic solids using a stabilized finite element method to approximate the associated eigenvalue problem. It is explained why residual based formulations are not appropriate in this case, and a formulation involving only the pressure gradient is employed. The effect of the stabilization term compared to a Galerkin approach is detailed, both in the derivation of the approximate formulation and in the error estimat...
Properties of light and heavy baryons in light cone qcd sum rules formalism
Azizi, Kazem; Özpineci, Altuğ; Department of Physics (2009)
In this thesis, we investigate the masses, form factors and magnetic dipole moments of some light octet, decuplet and heavy baryons containing a single heavy quark in the framework of the light cone QCD sum rules. The magnetic dipole moments can be measured considering radiative transitions within a multiplet or between multiplets. Analyzing the transitions among the baryons and calculating the above mentioned parameters can give us insight into the structure of those baryons. In analyzing the aforementione...
Citation Formats
S. S. Bayin and J. P. Krisch, “Fractional incompressible stars,” ASTROPHYSICS AND SPACE SCIENCE, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65411.