Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer
Date
2007-11-01
Author
Yazicioglu, B.
Yuencue, H.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
0
downloads
Cite This
The steady-state natural convection heat transfer from aluminum vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. Thirty different fin configurations were tested. Experiments were performed for fin lengths of 250 and 340 mm. Fin thickness was kept fixed at 3 mm. Fin height and fin spacing were varied from 5 to 25 mm and 5.75 to 85.5 mm, respectively. Five heat inputs ranging from 25 to 125 W were supplied for all fin configurations, hence; the base-to-ambient temperature differences were measured in order to evaluate the heat transfer rates from fin arrays. The results of experiments have shown that the convective heat transfer rate from fin arrays depends on geometric parameters and base-to-ambient temperature difference. The separate roles of fin height, fin spacing and base-to-ambient temperature difference were investigated. It was found that, for a given base-to-ambient temperature difference, the convective heat transfer rate from fin arrays takes on a maximum value as a function of fin spacing and fin height and an optimum fin spacing value which maximizes the convective heat transfer rate from the fin array is available for every fin height. These measurements were to extend data obtained earlier from aluminum fin-arrays using the same experimental system and method (Yuncu and Guvenc in Heat Mass Transfer 37:409-416, 2001). Data collated from earlier and present work cover the range of fin spacing from 4.5 to 85.5 mm. The fin length range was from 100 to 340 mm, the fin height from 5 to 25 mm and the number of fins per array 3 to 34. The range of base-to-ambient temperature difference was quite extensive, from 30 to 150 K. These results indicate that the optimum fin spacing is between 6.1 and 11.9 mm, for the fin arrays employed in the earlier and present work. A scale analysis is performed in order to estimate the order-of-magnitude of optimum fin spacing at a given fin length and base-to-ambient temperature difference. From the scale analysis, correlations to evaluate the optimum fin spacing value and the corresponding maximum convective heat transfer rate at a given fin length and base-to-ambient temperature difference were obtained.
URI
https://hdl.handle.net/11511/65429
Journal
HEAT AND MASS TRANSFER
DOI
https://doi.org/10.1007/s00231-006-0207-6
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Performance of rectangular fins on a vertical base in free convection heat transfer
Yazıcıoğlu, Burak; Yüncü, Hafit; Department of Mechanical Engineering (2005)
The steady-state natural convection heat transfer from vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. The effects of geometric parameters and base-to-ambient temperature difference on the heat transfer performance of fin arrays were observed and the optimum fin separation values were determined. Two similar experimental set-ups were employed during experiments in order to take measurements from 30 different fin configurations having fin le...
FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field
TÜRK, ÖNDER; Tezer, Münevver (2017-03-01)
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide ()-water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the ...
An experimental investigation on performance of fins on a horizontal base in free convection heat transfer
Guvenc, A; Yüncü, Hafit (2001-07-01)
Natural convection heat transfer in rectangular fin-arrays mounted on a vertical base was investigated experimentally. An experimental set-up was constructed and calibrated to test 15 different fin configurations. Fin length and fin thickness were kept fixed at 100 and 3 mm respectively, while fin spacing was varied from 4.5 to 58.75 mm and fin height was varied from 5 to 25 mm. Base-to-ambient temperature difference was also varied through a calibrated wattmeter ranging from 10 to 50 W. The results showed ...
Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes
Ayli, Ece; Bayer, Özgür; Aradağ Çelebioğlu, Selin (2016-11-01)
Steady-state heat transfer from rectangular fin arrays is examined experimentally and numerically for turbulent fully developed flow. The effects of geometrical parameters on heat transfer coefficient and Nusselt number are investigated. For different inter fin ratios, Reynolds number and Nusselt number dependence of the results is investigated. A generalized empirical correlation for Nusselt number is developed for rectangular fins for a Reynolds number range of 17 x 10(7) < Re < 2.47 x 10(8), and an aspec...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yazicioglu and H. Yuencue, “Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer,”
HEAT AND MASS TRANSFER
, pp. 11–21, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65429.