Seismic vulnerability, behavior and design of tunnel form building structures

2004-12-01
Balkaya, C
Kalkan, E
Multi-story reinforced concrete tunnel form buildings are one of the common structural types in regions prone to high seismic risk due to the buildings inherent earthquake resistance and ease of construction. Despite their good performance during earthquakes in 1999 in Turkey, and abundance of such structures scattered worldwide, current seismic codes and design provisions provide insufficient guidelines for their seismic design. As a compensatory measure, a series of modal and nonlinear static analyses are conducted by emphasizing the characteristic dynamic behavior of tunnel form buildings including impacts of wall-to-wall and wall-to-slab interaction and effects of torsion and wall-openings on the load transfer mechanism and seismic performance. A new formula for explicit determination of their fundamental period is developed in addition to a recommended response reduction factor and reinforcement detailing around shear-wall openings.
ENGINEERING STRUCTURES

Suggestions

Displacement-based seismic rehabilitation of non-ductile RC frames with added shear walls
Karageyik, Can; Sucuoğlu, Haluk; Department of Civil Engineering (2010)
Non-ductile reinforced concrete frame buildings constitute an important part of the vulnerable buildings in seismic regions of the world. Collapse of non-ductile multi story concrete buildings during strong earthquakes in the past resulted in severe casualties and economic losses. Their rehabilitation through retrofitting is a critical issue in reducing seismic risks worldwide. A displacement-based retrofitting approach is presented in this study for seismic retrofitting of medium height non-ductile concret...
Seismic behavior and improvement of autoclaved aerated concrete infill walls
Binici, Barış; Canbay, Erdem; Uzgan, Ugur; Eryurtlu, Zafer; Bulbul, Koray; Yakut, Ahmet (Elsevier BV, 2019-08-15)
Performance of infill walls in reinforced concrete (RC) frames is generally questionable under the combined action of in-plane and out-of-plane seismic demands. Despite the vast number of tests investigating the behavior of brick masonry infill walls in RC frames, past research is limited for infill walls made of Autoclaved Aerated Concrete (AAC) blocks. In the first part of the study, six single-bay single-story half-scaled RC frames were tested under the action of in-plane cyclic displacement excursions a...
Seismic behavior of autoclaved aerated concrete low rise buildings with reinforced wall panels
Gökmen, Furkan; Binici, Barış; Canbay, Erdem (Springer Science and Business Media LLC, 2019-07-01)
Reinforced Autoclaved Aerated Concrete (AAC) wall panels are more commonly used to construct load-bearing walls in low-rise prefabricated buildings located in seismic zones. In the scope of this study, the seismic response of buildings constructed with reinforced AAC wall panels was investigated. To this end, an in situ test was conducted on a two-story test building under reversed cyclic displacement excursions. It was determined that the test building could carry a lateral load of 60% more than its weight...
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in turkey using Düzce damage database
Özün, Ahsen; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
In this study, the seismic fragility assessment of low-rise and mid-rise reinforced concrete frame buildings which constitute approximately 75 % of the total building stock in Turkey is investigated to quantify the earthquake risk. The inventory used in this study is selected from Düzce damage database which was compiled after the devastating 1999 earthquakes in the Marmara region. These buildings are not designed according to the current code regulations and the supervision in the construction phase is not...
Seismic performance of multisimple-span bridges retrofitted with link slabs
Caner, Alp; Zia, P. (American Society of Civil Engineers (ASCE), 2002-03-01)
During earthquakes multisimple-span bridges are vulnerable to span separation at their expansion joints. A common way of preventing unseating of spans is to have cable or rod restrainers that provide connections between adjacent spans. Alternatively, dislocation of the girders can be controlled with a link slab that is the continuous portion of the bridge deck between simple spans. Seismic retrofit with link slab should be more cost-effective than the existing methods when it is performed during redecking o...
Citation Formats
C. Balkaya and E. Kalkan, “Seismic vulnerability, behavior and design of tunnel form building structures,” ENGINEERING STRUCTURES, pp. 2081–2099, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65454.