Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain
Download
index.pdf
Date
2003-01-15
Author
Dereli, G
Ozdogan, C
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
50
downloads
Cite This
A (10x10) single-walled carbon nanotube consisting of 400 atoms with 20 layers is simulated under tensile loading using our developed O(N) parallel tight-binding molecular-dynamics algorithms. It is observed that the simulated carbon nanotube is able to carry the strain up to 122% of the relaxed tube length in elongation and up to 93% for compression. Young's modulus, tensile strength, and the Poisson ratio are calculated and the values found are 0.311 TPa, 4.92 GPa, and 0.287, respectively. The stress-strain curve is obtained. The elastic limit is observed at a strain rate of 0.09 while the breaking point is at 0.23. The frequency of vibration for the pristine (10x10) carbon nanotube in the radial direction is 4.71x10(3) GHz and it is sensitive to the strain rate.
Subject Keywords
Condensed Matter Physics
URI
https://hdl.handle.net/11511/65672
Journal
PHYSICAL REVIEW B
DOI
https://doi.org/10.1103/physrevb.67.035416
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Experimental study on the velocity limits of magnetized rotating plasmas
Teodorescu, C.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Lunsford, R.; Uzun Kaymak, İlker Ümit; Young, W. C. (AIP Publishing, 2008-04-01)
An experimental study on the physical limits of the rotation velocity of magnetized plasmas is presented. Experiments are performed in the Maryland Centrifugal Experiment (MCX) [R. F. Ellis , Phys. Plasmas 12, 055704 (2005)], a mirror magnetic field plasma rotating azimuthally. The externally applied parameters that control the plasma characteristics-applied voltage, external magnetic field, and fill pressure-are scanned across the entire available range of values. It is found that the plasma rotation veloc...
Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Structural Properties of Silicon Nanorods Under Strain: Molecular Dynamics Simulations
Ozdamar, Burak; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of silicon nanorods generated from low-index plane surfaces (100), (110), and (111) with different cross-sections have been investigated by performing classical molecular dynamics simulations. An atomistic potential function consisting of a combination of two- and three-body interactions has been used to represent the interactions among the atoms. Strain has been applied to the generated Si nanorods along the uniaxial rod direction at two different temperatures; 1 K and 300 K. Si nanor...
Structural stability and electronic properties of different cross-sectional unstrained and rectangular cross-sectional strained GaP nanowires
Mohammad, Rezek; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2019-02-10)
The stability and electronic properties of the hexagonal, trigonal and rectangular cross-sectional GaP nanowires in wurtzite (WZ) phase are investigated using full potential linear augmented plane waves method. The rectangular cross-sectional nanowires are found more stable than the hexagonal and trigonal ones. The indirect bandgap structure of the nanowires is transformed into the direct bandgap one at a critical size connected to the geometry of the cross-section. The energy bandgap of the nanowires in th...
Particle in Cell/Monte Carlo Collision Method for Simulation of RF Glow Discharges: Effect of Super Particle Weighting
ERDEN, E.; Rafatov, İsmail (Wiley, 2014-08-01)
A parallel Particle in Cell/Monte Carlo Collision (PIC/MCC) numerical code for glow discharge plasma simulations is developed and verified. This method is based on simultaneous solution of the Lorentz equations of motion of super particles, coupled with the Poisson's equation for electric field. Collisions between the particles are modelled by the Monte Carlo method. Proper choice of particle weighting is critically important in order to perform adequate and efficient PIC simulations of plasma. Herein, effe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Dereli and C. Ozdogan, “Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain,”
PHYSICAL REVIEW B
, pp. 0–0, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65672.