Applications of a 3-D numerical model to circulation in coastal waters

Balas, L
Ozhan, E
A three dimensional baroclinic numerical model which consists of hydrodynamic, transport and turbulence model components, has been applied to two test cases, including: the wind induced flow in a laboratory basin and tidal flow in a model rectangular harbor. The agreement between the physical and numerical model results is highly encouraging. Model has been implemented to Oludeniz Lagoon located at the Mediterranean coast of Turkey to simulate tidal and wind driven currents. M2 tide is the dominant tidal constituent for the area. There exist some field measurements performed on water salinity, water temperature and current pattern in Oludeniz Lagoon. Even though measurements provide only some preliminary data for the site, favorable results have been obtained from the application of the model to a real coastal water body.


Implementation and comparison of turbulence models on a flat plate problem using a Navier-Stokes solver
Genç, Balkan Ziya; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2003)
For turbulent flow calculations, some of the well-known turbulence models in the literature are applied on a previously developed Navier-Stokes solver designed to handle laminar flows. A finite volume formulation, which is cell-based for inviscid terms and cell-vertex for viscous terms, is used for numerical discretization of the Navier-Stokes equations in conservative form. This formulation is combined with one-step, explicit time marching Lax-Wendroff numerical scheme that is second order accurate in spac...
Simulation of water exchange in enclosed water bodies
Ozhan, E; Balas, L (2003-01-01)
A 0-D (box type) mathematical flushing model and a three-dimensional baroclinic numerical model have been presented that are used to simulate transport processes in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier-Stokes equations are solved with the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In...
Numerical modeling of re-suspension and transport of fine sediments in coastal waters
Karadoğan, Erol; Özhan, Erdal; Department of Civil Engineering (2004)
In this thesis, the theory of three dimensional numerical modeling of transport and re-suspension of fine sediments is studied and a computer program is develped for simulation of the three dimensional suspended sediment transport. The computer program solves the three dimensional advection-diffusion equation simultaneously with a computer program prepared earlier for the simulation of three dimensional current systems. This computer program computes the velocity vectors, eddy viscosities and water surface ...
Simulation of eddy-driven phytoplankton production in the Black Sea
Oguz, T; Salihoğlu, Barış (2000-07-15)
A three dimensional, three-layer biological model is used to assess impact of eddy-dominated horizontal circulation on the spatial and temporal variations of plankton biomass in the Black Sea. Simulations are shown to exhibit patchy distributions of phytoplankton biomass as inferred from satellite images, and their intensities agree reasonably well with observations. Overall performance of the three layer model points to its potential capability as a practical alternative tool to more complex and computatio...
Implementation and assessment of Hellsten explicit algebraic Reynolds stress k-omega model
İlhan, Umut; Aksel, Mehmet Haluk; Baran, Özgür Uğraş; Department of Mechanical Engineering (2022-9)
Turbulence modeling is one of the most challenging aspects of Computational Fluid Dynamics (CFD). The choice of turbulence model affects the accuracy and computational cost of the CFD analyses. Linear Eddy Viscosity Models (LEVMs) are commonly used in industrial CFD applications due to their low computational cost and ease of convergence. However, they often fail to model complex flow structures. More advanced models, such as Reynolds Stress Transport Models (RSTMs), have better performance for capturing th...
Citation Formats
L. Balas and E. Ozhan, “Applications of a 3-D numerical model to circulation in coastal waters,” COASTAL ENGINEERING JOURNAL, pp. 99–120, 2001, Accessed: 00, 2020. [Online]. Available: