Cracked semi-infinite cylinder and finite cylinder problems

2006-12-01
Kaman, Mete Onur
Gecit, Mehmet Rusen
This work considers the analysis of a cracked semi-infinite cylinder and a finite cylinder. Material of the cylinder is assumed to be linearly elastic and isotropic. One end of the cylinder is bonded to a fixed support while the other end is subjected to axial tension. Solution of this problem can be obtained by superposition of solutions for an infinite cylinder subjected to uniformly distributed tensile load at infinity (I) and an infinite cylinder having a penny-shaped rigid inclusion at z = 0 and two penny-shaped cracks at z = L (II). General expressions for the perturbation problem (II) are obtained by solving Navier equations with Fourier and Hankel transforms. When the radius of the inclusion approaches the radius of the cylinder, the end at z = 0 becomes fixed and when the radius of the cracks approach the radius of the cylinder, the ends at Z = +/- L become cut and subject to uniform tensile load. Formulation of the problem is reduced to a system of three singular integral equations. By using Gauss-Lobatto and Gauss-Jacobi integration formulas, these three singular integral equations are converted to a system of linear algebraic equations which is solved numerically. (c) 2006 Published by Elsevier Ltd.
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE

Suggestions

Cracked semi-infinite cylinder and finite cylinder problems
Kaman, Mete Onur; Geçit, M. Ruşen; Department of Engineering Sciences (2006)
This work considers a cracked semi-infinite cylinder and a finite cylinder. Material of the cylinder is linearly elastic and isotropic. One end of the cylinder is bonded to a fixed support while the other end is subject to axial tension. Solution for this problem can be obtained from the solution for an infinite cylinder having a penny-shaped rigid inclusion at z = 0 and two penny-shaped cracks at z = ± L. General expressions for this problem are obtained by solving Navier equations using Fourier and Hankel...
Axisymmetric crack problem for a hollow cylinder imbedded in a dissimilar medium
Kadıoğlu, Fevzi Suat (Elsevier BV, 2005-05-01)
The analytical solution for the linear elastic problem of flat annular crack in a transversely isotropic hollow cylinder imbedded in a transversely isotropic medium is considered. The hollow cylinder is assumed to be perfectly bonded to the surrounding medium. This structure, which can represent a cylindrical coating-substrate system, is subjected to uniform crack surface pressure. Because of the geometry and the loading, the problem is axisymmetric. The z = 0 plane on which the crack lies, is also a plane ...
Numerical investigation of flow and scour around a vertical circular cylinder
Baykal, Cüneyt; Fuhrman, D. R.; Jacobsen, N. G.; Fredsoe, J. (The Royal Society, 2015-01-28)
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier-Stokes equations. The model incorporates (i) k-omega turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it i...
Electropolishing of an Fe-Ni-Co Alloy in Acetic Acid-Perchloric Acid Mixture
Aksu, Yasemin; ERDOĞAN, METEHAN; Demirci, Gokhan; Karakaya, İshak (2016-06-02)
Among Fe-Ni-Co alloys, Kovar (53%Fe-29%Ni-17%Co) designated as ASTM F-15 (1), is a well-known glass-sealing alloy. It is also classified as low–expansion alloy (2). Low expansion is required to avoid internal stresses in applications that involve strong ceramic to metal joining such as in vacuum systems (3-6). Electropolishing is applied to obtain smooth metallic surfaces to gain low outgassing rates from the chamber walls in vacuum applications (7-9). The effects of current density, perchloric acid concent...
Assessment of a frequency-domain linearised Euler solver for turbofan aft radiation predictions and comparison with measurements
Özyörük, Yusuf (2010-03-31)
This paper presents a frequency-domain computational aeroacoustics tool for predicting aft noise radiation through turbofan ducts and jets and its application to two realistic engine exhaust configurations which have been experimentally tested. The tool is based on the discretised axisymmetric form of the linearised Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The resultant linear system of equations is inver...
Citation Formats
M. O. Kaman and M. R. Gecit, “Cracked semi-infinite cylinder and finite cylinder problems,” INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, pp. 1534–1555, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65769.