Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of volatility feedback and leverage effects on the ISE30 index using high frequency data
Date
2014-03-15
Author
Inkaya, A.
Okur, Y. Yolcu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
245
views
0
downloads
Cite This
In this study, we employ the techniques of Malliavin calculus to analyze the volatility feedback and leverage effects for a better understanding of financial market dynamics. We estimate both effects for a general semimartingale model applying Fourier analysis developed in Malliavin and Mancino (2002) [10]. We further investigate their joint behaviour using 5 min data of the ISE30 index. On the basis of these estimations, we look for the evidence that volatility feedback effect rate can be employed in the stability analysis of financial markets.
Subject Keywords
Applied Mathematics
,
Computational Mathematics
URI
https://hdl.handle.net/11511/65793
Journal
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
DOI
https://doi.org/10.1016/j.cam.2013.06.024
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
RMARS: Robustification of multivariate adaptive regression spline under polyhedral uncertainty
Ozmen, Ayse; Weber, Gerhard Wilhelm (Elsevier BV, 2014-03-15)
Since, with increased volatility and further uncertainties, financial crises translated a high "noise" within data from financial markets and economies into the related models, recent years' events in the financial world have led to radically untrustworthy representations of the future. Hence, robustification started to attract more attention in finance. The presence of noise and data uncertainty raises critical problems to be dealt with on the theoretical and computational side. For immunizing against para...
On the correlation of the supremum and the infimum and of maximum gain and maximum loss of Brownian motion with drift
Vardar Acar, Ceren; Szekely, Gabor J. (Elsevier BV, 2013-08-15)
Investors are naturally interested in the supremum and the infimum of stock prices, also in the maximum gain and the maximum loss over a time period. To shed light on these relatively complicated aspects of sample paths, we consider Brownian motion with and without drift. We provide explicit calculations of the correlation between the supremum and the infimum of Brownian motion with drift. We establish a number of results concerning the distributions of maximum gain and maximum loss. We present simulation s...
Dynamic programming for a Markov-switching jump-diffusion
Azevedo, N.; Pinheiro, D.; Weber, Gerhard Wilhelm (Elsevier BV, 2014-09-01)
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump-diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman's optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton-Jacobi-Belman equation, which turns out to be a partial in...
Stochastic volatility and stochastic interest rate model with jump and its application on General Electric data
Celep, Betül; Hayfavi, Azize; Department of Financial Mathematics (2011)
In this thesis, we present two different approaches for the stochastic volatility and stochastic interest rate model with jump and analyze the performance of four alternative models. In the first approach, suggested by Scott, the closed form solution for prices on European call stock options are developed by deriving characteristic functions with the help of martingale methods. Here, we study the asset price process and give in detail the derivation of the European call option price process. The second appr...
Analysis of Model Variance for Ensemble Based Turbulence Modeling
Jiang, Nan; Kaya Merdan, Songül; Layton, William (Walter de Gruyter GmbH, 2015-04-01)
This report develops an ensemble or statistical eddy viscosity model. The model is parameterized by an ensemble of solutions of an ensemble-Leray regularization. The combined approach of ensemble time stepping and ensemble eddy viscosity modeling allows direct parametrization of the turbulent viscosity co-efficient. We prove unconditional stability and that the model's solution approaches statistical equilibrium as t -> infinity; the model's variance converges to zero as t -> infinity. The ensemble method i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Inkaya and Y. Y. Okur, “Analysis of volatility feedback and leverage effects on the ISE30 index using high frequency data,”
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
, pp. 377–384, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65793.