BIOlogically-inspired Spectrum Sharing in cognitive radio networks

2007-03-15
Atakan, Baris
Akan, Oezguer B.
Cognitive radio is the promising radio technology, which aims to detect and utilize the temporally unused spectrum bands by sensing its radio environment in order to enhance spectrum utilization. However, these objectives bring significant challenges and required functionalities such as spectrum sensing, sharing, management and mobility for the realization of Cognitive Radio Networks (CRN). In particular, efficient spectrum sharing problem in cognitive radio communication is one of the most important problem which must be addressed in order to enhance the overall spectrum utilization in dynamic spectrum access environments. In this paper, we introduce a new BIOlogically-inspired Spectrum Sharing (BIOSS) algorithm which is based on the adaptive task allocation model in insect colonies. Without need for any coordination among the unlicensed users, MOSS enables each unlicensed user to distributively determine the appropriate channel(s) over which it can communicate. Performance evaluations clearly reveal that BIOSS achieves efficient dynamic spectrum sharing with high spectrum utilization and without any coordination among the users and hence yielding no spectrum handoff latency overhead due to coordination.

Suggestions

Cognitive Radio Sensor Networks
Akan, Ozgur B.; Karli, Osman B.; Ergul, Ozgur (2009-07-01)
Dynamic spectrum access stands as a promising and spectrum-efficient communication ion approach for resource-constrained multihop wireless sensor networks due to their event-driven communication nature, which generally yields bursty traffic depending on the event characteristics. In addition, opportunistic spectrum access may also help realize the deployment of multiple overlaid sensor networks, and eliminate collision and excessive contention delay incurred by dense node deployment. Incorporating cognitive...
Near optimal scheduling for opportunistic spectrum access over block fading channels in cognitive radio assisted vehicular network
Gül, Ömer Melih; Kantarci, Burak (2022-10-01)
© 2022 Elsevier Inc.With the increasing use of cognitive radio technology in vehicular communications, vehicles will be enabled with cognitive radio in the future. Cognitive radio assisted vehicular networks make cognitive radio enabled vehicles utilize licensed spectrum on highways opportunistically. This work tackles cognitive radio assisted vehicular networks including M primary users (transmitter), M primary receivers, a secondary user (transmitter) with K channels and K secondary receivers. A channel i...
Event-driven MAC Protocol For Dual-Radio Cooperation
Khatibi, Arash; Durmus, Yunus; Onur, Ertan; Niemegeers, Ignas (2012-01-01)
One of the sources of the energy waste in wireless sensor networks is idle listening, the time in which a node monitors the free channel. In applications where the events occur sporadically, energy consumption due to idle listening can be further reduced by dual-radio cooperation. In dual-radio cooperation, nodes in the network have two stacks. One stack makes use of a low-power wake-up radio for event-driven communication over the main radio. The other stack may employ any sensor networking medium access c...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Fuzzy Semantic Web Architecture for Activity Detection in Wireless Multimedia Sensor Network Applications
Ozdin, Ali Nail; Yazıcı, Adnan; KOYUNCU, Murat (2019-01-01)
This study aims to increase the reliability of activity detection in Wireless Multimedia Sensor Networks (WMSNs) by using Semantic Web technologies extended with fuzzy logic. The proposed approach consists of three layers: the sensor layer, the data layer, and the Semantic Web layer. The sensor layer comprises a WMSN comprising sensor nodes with multimedia and scalar sensors. The data layer retrieves and stores data from the sink of WMSN. At the top of the architecture, there is a semantic web layer that in...
Citation Formats
B. Atakan and O. B. Akan, “BIOlogically-inspired Spectrum Sharing in cognitive radio networks,” 2007, p. 43, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65883.