Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Heat Distribution within the Wellbore While Drilling
Date
2009-01-01
Author
Apak, E. C.
Ozbayoglu, E. M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
240
views
0
downloads
Cite This
Analysis of the drilling fluid temperature in a circulating well is the main objective of this study. Initially, different analytical temperature distribution models were studied. Variables that have significant effect on temperature profile are observed. Since the verification of the analytical model is not probable for many cases, a computer program that uses a finite element method is employed to simulate different well conditions. Three different wells are modeled by using rectangular elements with four nodes. Maximum drilling fluid temperature data corresponding to significant variables are collected from these models. These data are then used to develop an empirical correlation in order to determine maximum drilling fluid temperature. The proposed empirical correlation can estimate the temperature distribution within the wellbore with an average error of less than 16%, and maximum drilling fluid temperature with an average error of less than 7%.
Subject Keywords
Fuel Technology
,
Geotechnical Engineering and Engineering Geology
,
Energy Engineering and Power Technology
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/65908
Journal
PETROLEUM SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/10916460802105617
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Sensitivity Analysis of Major Drilling Parameters on Cuttings Transport during Drilling Highly-inclined Wells
Ozbayoglu, E. M.; Miska, S. Z.; Takach, N.; Reed, T. (Informa UK Limited, 2009-01-01)
In this study, a layered cuttings transport model is developed for high-angle and horizontal wells, which can be used for incompressible non-Newtonian fluids as well as compressible non-Newtonian fluids (i.e., foams). The effects of major drilling parameters, such as flow rate, rate of penetration, fluid density, viscosity, gas ratio, cuttings size, cuttings density, wellbore inclination and eccentricity of the drillsting on cuttings transport efficiency are analyzed. The major findings from this study are,...
A study on heat transfer inside the wellbore during drilling operations
Apak, Esat Can; Özbayoğlu, Evren; Department of Petroleum and Natural Gas Engineering (2006)
Analysis of the drilling fluid temperature in a circulating well is the main objective of this study. Initially, an analytical temperature distribution model, which utilizes basic energy conservation principle, is presented for this purpose. A computer program is written in order to easily implement this model to different cases. Variables that have significant effect on temperature profile are observed. Since the verification of the analytical model is not probable for many cases, a computer program (ANSYS...
Determination of wettability and its effect on waterflood performance in limestone medium
Karabakal, U (American Chemical Society (ACS), 2004-03-01)
Wettability measurement methods, the effect of wettability on fluid distribution, and fluid flow in porous media were discussed, and the influence of rock wettability on the relative permeability and recovery of oil by waterflooding were investigated. Experimental studies were conducted on a total of 23 core plugs from two different limestone formations. Synthetic brine (NaCl solution) and mineral oil, which has a viscosity ratio of similar to10, were used as the test fluids. Core samples, saturated with sy...
Empirical correlations for estimating filtrate volume of water based drilling fluids
Ozbayoglu, Evren; Gunes, Cagri; Apak, Esat C.; Kök, Mustafa Verşan; Iscan, A. Gurkan (Informa UK Limited, 2005-03-01)
Standard American Petroleum Institute (API) filter press is generally used for identifying the filtrate volume of drilling fluids and works only at very low pressures. In fact, during a drilling operation, at downhole conditions, the pressures encountered are significantly higher than what is used during standard API filter press tests. A relationship between the well-known fluid properties and the filtrate volume test is developed. In this study, experiments have been conducted for different water-clay mix...
Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. C. Apak and E. M. Ozbayoglu, “Heat Distribution within the Wellbore While Drilling,”
PETROLEUM SCIENCE AND TECHNOLOGY
, pp. 678–686, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65908.