Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Perfect metamaterial absorber design for solar cell applications
Date
2015-07-03
Author
Mulla, B.
Sabah, C.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
A new perfect metamaterial absorber based on metal-dielectric layer combination is designed and investigated to be used in solar cell application. The designed structure is particularly presented in the range of solar spectrum in order to utilize the solar energy effectively. Parametric studies with respect to the dimensions of the structure are carried out to characterize the absorber. According to the results, it is found that the metamaterial absorber has 99.99% absorption at 403.5 THz. In addition, the fractional bandwidth (FBW) of the absorption region is calculated and 22.2% FBW is obtained. Moreover the simulation results showed that the proposed design is also polarization and incident angle insensitive. As a result, the proposed metamaterial absorber provides perfect absorption for visible and near infrared frequency ranges and can be used for the realization of more efficient new solar cells.
Subject Keywords
Slabs
,
Cloaking
,
Band
,
Polarization
URI
https://hdl.handle.net/11511/66117
Journal
WAVES IN RANDOM AND COMPLEX MEDIA
DOI
https://doi.org/10.1080/17455030.2015.1042091
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells
Rufangura, Patrick; Sabah, Cumali (2016-12-01)
This paper suggests a metamaterial (MTM) absorber structure to be used for efficiency improved solar cell. The proposed MTM absorber consists of the topmost three concentric circular ring resonators, and a ground metal plane sandwiched to the top layer with a dielectric spacer. Numerical simulation and theoretical (interference theory) studies on the proposed design show a wideband with near-perfect (>99%) absorption response in the visible frequency region of the solar spectrum. Thermal characterization of...
Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications
MAVROKEFALOS, Anastassios; HAN, Sang Eon; Yerci, Selçuk; Branham, Matthew S.; CHEN, Gang (2012-06-01)
Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid light-trapping scheme for c-Si thin films, fabricated at wafer scale via a low-cost wet etching process, significantly enhances absorption within the c-Si layer. A broadband enhancement in absorptance that approaches the Yablo-novitch limit (Yablo-novitch, E. J. Opt. Soc. Am. 1987, 72, ...
Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers
Ustunsoy, Mehmet Pasa; Sabah, Cumali (2016-12-05)
In this paper, a dual-band high-frequency metamaterial absorber based on patch resonator is designed and analyzed for solar cells. In order to obtain a metamaterial absorber, metal-semiconductor-metal layers are combined. The results of the designed structure are shown in the infrared and visible ranges of solar spectrum. Structural parameters and dimensions of the device have a significant importance on the performance of the designed absorber. The simulations are carried out with full-wave electromagnetic...
Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications
ÜNAL, EMİN; Dincer, Furkan; TETİK, ERKAN; KARAASLAN, MUHARREM; Bakir, Mehmet; Sabah, Cumali (2015-12-01)
We present the design, characterization, theoretical and experimental verification of a tunable perfect metamaterial absorber (MA) based electromagnetic (EM) energy harvesting and sensor application. We have used the golden ratio while determining the dimensions allowing a simple configuration and an easy fabrication for the proposed structure. We have examined and analyzed the perfect absorption (both numerically and experimentally) and EM energy harvesting (numerically) behaviors of the proposed structure...
Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Mulla and C. Sabah, “Perfect metamaterial absorber design for solar cell applications,”
WAVES IN RANDOM AND COMPLEX MEDIA
, pp. 382–392, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66117.