Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization of flow regime in concentric annuli and pipes for yield-pseudoplastic fluids
Date
1996-09-01
Author
Gucuyener, IH
Mehmetoglu, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
This paper presents an analysis of the laminar-turbulent transition for flow of yield-pseudoplastic fluids in pipes and concentric annuli. The yield-pseudoplastic rheology is represented by the three-parameter Robertson-Stiff model, A modified Reynolds number is developed based on an equivalent diameter including characteristic parameters of the flow situations under consideration. Using the literature data, Hanks' theory of laminar flow stability is reanalyzed in comparison with other correlations. On account of the generality of Hanks' stability criterion and its experimentally proven success to some extent, it is used herein to calculate critical values of the modified Reynolds number. Numerical results are presented in terms of the dimensionless rheological parameters and the annulus aspect ratio, Further, it is shown that constant critical value of Hanks' stability parameter (K-mc = 404) does not necessarily apply to non-Newtonian fluids. This fact is demonstrated for pipe flow of Bingham plastic fluids.
URI
https://hdl.handle.net/11511/66128
Journal
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1016/0920-4105(96)00025-3
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Modeling of piston secondary dynamics and tribology
Keribar, Rifat; Dursunkaya, Zafer (1992-06-01)
This paper describes a general, design-oriented model for the analysis of secondary motions in conventional and articulated piston assemblies. The model solves for the axial, lateral and rotational departures in positions and motions from the nominal kinematics, resulting from clearances within the piston assembly and also between the piston assembly components and the cylinder. In order to accurately represent the effect of oil films, the model includes comprehensive treatments of hydrodynamic and boundary...
Simulation of Secondary Dynamics of Articulated and Conventional Piston Assemblies
Dursunkaya, Zafer (1992-01-01)
This paper describes a general model for the analysis of secondary motions in conventional and articulated piston assemblies. The model solves for the axial, lateral and rotational departures in positions and motions from the nominal kinematics, resulting from clearances within the piston assembly and also between the piston assembly components and the cylinder. The methodology allows the characterization of conventional and articulated piston secondary motions in the thrust plane of the cylinder. Motions o...
Analysis and characterization of an electrostatically actuated in-plane parylene microvalve
Yıldırım, Ender; Külah, Haluk (IOP Publishing, 2011-10-01)
This paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Microvalves with different diaphragm radii are fabricated using surface micromachining techniques. Pull-in tests are carried out under the no-flow condition with ai...
Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity
MIEHE, CHRISTIAN; LAMBRECHT, MATTHIAS; Gürses, Ercan (Elsevier BV, 2004-12-01)
We propose an approach to the definition and analysis of material instabilities in rate-independent standard dissipative solids at finite strains based on finite-step-sized incremental energy minimization principles. The point of departure is a recently developed constitutive minimization principle for standard dissipative materials that optimizes a generalized incremental work function with respect to the internal variables. In an incremental setting at finite time steps this variational problem defines a ...
Computation of Thermal Fracture Parameters for Inclined Cracks in Functionally Graded Materials Using Jk-Integral
Dağ, Serkan (Informa UK Limited, 2009-01-01)
This article describes the formulation and implementation of the Jk-integral for the analysis of inclined cracks located in functionally graded materials (FGMs) that are subjected to thermal stresses. The generalized definition of the Jk-integral over a vanishingly small curve at the tip of an inclined crack is converted to a domain independent form that consists of area and line integrals defined over finite domains. A numerical procedure based on the finite element method is then developed, which allows t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Gucuyener and T. Mehmetoglu, “Characterization of flow regime in concentric annuli and pipes for yield-pseudoplastic fluids,”
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
, pp. 45–60, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66128.