Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Upstream control of the frontal jet regulating plankton production in the Alboran Sea (Western Mediterranean)
Download
index.pdf
Date
2016-09-01
Author
Oguz, Temel
Mourre, Baptiste
Tintore, Joaquin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
106
views
0
downloads
Cite This
Using a coupled physical-biological model, we document that a approximate to 30 km wide meandering jet constitutes a major source of biological enrichment in the Alboran Sea (Western Mediterranean) even in the absence of wind forcing and tidal dynamics. The level of enrichment is shown to vary markedly during the year depending on the upstream characteristics of the jet as it exits from the Gibraltar Strait. When its intensity is sufficiently low and characterized by weaker cross-frontal density gradients during winter-spring, the jet is weakly nonlinear and may not fulfill the necessary conditions for frontogenesis. It then remains weakly productive. In the case of stronger jet intensity (>1.1 Sv) accompanied by stronger cross-frontal density and velocity gradients within the Alboran Sea during summer-autumn, the frontal jet becomes strongly nonlinear and ageostrophic with large cross-frontal vorticity changes on the order of planetary vorticity. Under these conditions, upward vertical velocities in the range 10-50 m d(-1) supply nutrients into the euphotic layer more effectively and support high-level frontogenesis-induced phytoplankton production on the anticyclonic side of the main jet axis. The strong eddy pumping mechanism also provides a comparable level of plankton production within strongly nonlinear elongated cyclonic eddies along the outer periphery of the frontal jet. The plankton biomass is advected partially by the jet along its trajectory and dispersed within the basin by mesoscale eddies and meanders.
Subject Keywords
Alboran Sea
,
Eddies
,
Phytoplankton
,
Nutrients
,
Frontal jet
URI
https://hdl.handle.net/11511/66242
Journal
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
DOI
https://doi.org/10.1002/2016jc011667
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Seasonal Changes in the Composition and Abundance ofZooplankton in the Seas of the Mediterranean Basin
Kovalev, Av; Mazzocchı, Mg; Toklu Alıçlı, Benin; Skryabın, Va; Kıdeyş, Ahmet Erkan (2003-01-01)
Seasonal changes in the composition, abundance and biomass of zooplankton in the seas of the Mediterranean basin (the Mediterranean, Black and Azov seas) have been reviewed using our own data and data from the literature. In the deep-water central regions of the seas, the seasonal cycle of zooplankton abundance is characterised by one maximum occurring in spring or summer. In the coastal regions, two to three peaks (spring, summer and autumn) exist for the zooplankton abundance. The amplitude of seasonal fl...
Offshore wind farm site selection for Aegean and Mediterranean Sea, Turkey
Yıldız, Hatice Kübra; Oğuz, Elif; Huvaj Sarıhan, Nejan; Department of Civil Engineering (2021-8-26)
This thesis was focused on investigating potential sites in the Aegean and Mediterranean Sea for offshore wind turbines considering a number of criteria such as water depth, wind speed, grid connectivity, etc. Prior to that, all major floating offshore wind turbine installations in Europe and across the World were reviewed. The current status of the offshore wind industry in terms of technology and supporting mechanisms were summarized. Following this, potential sites were mapped using collected data from a...
Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process
Özyurt, Gülizar; Ergin, Ayşen; Baykal, Cüneyt (2010-12-01)
This paper discusses a parameter based coastal vulnerability assessment model to sea level rise. The model integrates physical characteristics and human activities with expert perception through an application of analytical hierarchy process (AHP). The results of AHP enables users to assign weights to parameters of the model which determine vulnerability of a coastal area to the impacts of sea level rise such as coastal erosion, inundation, flooding due to storm surges, saltwater intrusion to groundwater an...
Continuous resistivity profiling survey in Mersin Harbour, Northeastern Mediterranean Sea
OKYAR, Mahmut; YILMAZ, Sedat; Tezcan, Devrim; Cavas, Hakan (2013-06-01)
No detailed information has previously been available on the geological and geophysical characteristics of the sea floor and the underlying strata of Mersin Harbour, Northeastern Mediterranean Sea (Turkey). Continuous resistivity profiling (CRP) and borehole data from Mersin Harbour were used to interpret geoelectric stratigraphy of Neogene-Quaternary sediments in the area. This represents one of few such detailed case studies that have applied these valuable CRP techniques for the purpose of marine stratig...
Determinants of temperature and salinity in the Levantine Sea using in-situ data
Serimözü, Cem; Taşıran, Ali Cevat; Sustainable Environment and Energy Systems (2019-8)
The Levantine Sea, part of the Eastern Mediterranean where international interests collide and exposed to rising anthropogenic pressure, is our focus in this study. Additionally, four of its sub-regions: Cilician and Levantine Basins, Coastal Nile Delta and Rhodes Gyre are chosen. On account of the relative scarcity of scientific studies of these regions, we aimed to contribute to the investigation of Sea Water Temperature and Salinity, two critical oceanographic parameters in the context of climate change....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Oguz, B. Mourre, and J. Tintore, “Upstream control of the frontal jet regulating plankton production in the Alboran Sea (Western Mediterranean),”
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
, pp. 7159–7175, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66242.