Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process

2010-12-01
Özyurt, Gülizar
Ergin, Ayşen
Baykal, Cüneyt
This paper discusses a parameter based coastal vulnerability assessment model to sea level rise. The model integrates physical characteristics and human activities with expert perception through an application of analytical hierarchy process (AHP). The results of AHP enables users to assign weights to parameters of the model which determine vulnerability of a coastal area to the impacts of sea level rise such as coastal erosion, inundation, flooding due to storm surges, saltwater intrusion to groundwater and rivers. The results of AHP also indicates that sea level rise is not considered as one of the main driving forces of the impacts that might be already present contrary to the reports that state that sea level rise will trigger many problems along coastal areas. The application of the coastal vulnerability assessment model to two different coastal areas of Turkey showed that there is a need for overall evaluation of coastal areas in terms of vulnerability to sea level rise considering all the impacts. It is seen that assessing overall vulnerability is an important tool for national assessments. On the other hand, impact vulnerabilities are important when regional to local planning are considered since a region having a low overall vulnerability might show higher vulnerability for individual impacts. The proposed vulnerability methodology integrated with expert perception enables a simple yet effective representation of the coastal system while enabling decision makers to come up with proactive adaptation measures.
32nd International Conference on Coastal Engineering, ICCE 2010

Suggestions

Fuzzy Vulnerability Assessment of Coastal Areas To Sea Level Rise
ÖZYURT, GÜLİZAR; Ergin, Ayşen; Baykal, Cüneyt (2010-07-05)
This paper discusses a parameter based coastal vulnerability assessment model to sea level rise. The model integrates physical characteristics and human activities with expert perception through an application of analytical hierarchy process (AHP). The results of AHP enables users to assign weights to parameters of the model which determine vulnerability of a coastal area to the impacts of sea level rise such as coastal erosion, inundation, flooding due to storm surges, saltwater intrusion to groundwater an...
Improving Coastal Vulnerability Assessments to Sea-Level Rise: A New Indicator-Based Methodology for Decision Makers
Özyurt Tarakcıoğlu, Gülizar; Ergin, Ayşen (2010-03-01)
Integration of impacts of sea-level rise to coastal zone management practices are performed through coastal vulnerability assessments. Out of the types of vulnerability assessments, a proposed model demonstrated that relative vulnerability of different coastal environments to sealevel rise may be quantified using basic information that includes coastal geomorphology, rate of sea-level rise, and past shoreline evolution for the National Assessment of Coastal Vulnerability to Sea-Level Rise for U.S. Coasts. T...
Adaptation measures for seawalls to withstand sea-level rise
Kisacik, Dogan; Özyurt Tarakcıoğlu, Gülizar; Cappietti, Lorenzo (2022-04-15)
© 2022 Elsevier LtdSea level rise necessitates adaptation measures for coastal protection structures like seawalls as changes in the design conditions will generate higher wave overtopping discharges and coastal flooding. Although increasing crest height is a common measure, the recreational function of urban seawalls limits the applicability. In this paper, performance on overtopping control of crest modifications such as storm walls, parapets, promenade, and stilling wave basin (SWB), are studied for simp...
Environmental data gaps in Black Sea catchment countries: INSPIRE and GEOSS State of Play
Myroshnychenko, Volodymyr; Ray, Nicolas; Lehmann, Anthony; Giuliani, Gregory; Kıdeyş, Ahmet Erkan; Weller, Philip; Teodor, Dan (2015-02-01)
This paper presents the results of a large analysis of environmental data gaps in countries of the Black Sea catchment performed in the context of the FP7 enviroGRIDS project in 2010. We also assessed the level of compatibility of the data to the European directive establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) and to the international standards of data interoperability as advocated by the Group on Earth Observations (GEO) and implemented in the Global Earth Obser...
Seismic Microzonation of Erbaa, Tokat Province, Turkey, Based on Analytical Hierarchical Process
Akin, Muge K.; Topal, Tamer; Kramer, Steven L. (2012-05-01)
This study is to develop a seismic microzonation map using Analytical Hierarchical Process (AHP), one of the Multicriteria Decision Analysis methods based on Geographical Information Systems. The study area, Erbaa, is located along the eastern segment of the North Anatolian Fault Zone and is one of the largest towns and one of 12 districts within Tokat Province (population, similar to 176,000) in the Middle Black Sea Region of Turkey. Erbaa is located on the southwest bank of the Kelkit River. After the dis...
Citation Formats
G. Özyurt, A. Ergin, and C. Baykal, “Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process,” Shanghai, China, 2010, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864453831&origin=inward.