Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental investigation of CO tolerance in high temperature PEM fuel cells
Date
2018-10-04
Author
DEVRİM, YILSER
Albostan, Ayhan
Devrim, Huseyin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
268
views
0
downloads
Cite This
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to the deformations occurring in the cell components at high working temperatures. To investigate the effects of CO on the performance of HT-PEMFC, the CO concentration ranged from 1 to 5 vol %. The current density at 0.6 V decreases from 0.33 A/cm(2) for H-2 to 0.31 A/cm(2) for H-2 containing 1 vol % CO, to 0.29 A/cm(2) for 3 vol % CO, and 0.25 A/cm(2) for 5 vol % CO, respectively. The experimental results show that the presence of 25 vol % CO2 or N-2 has only a dilution effect and therefore, there is a minor impact on the HT-PEMFC performance. However, the addition of CO to H-2/N-2 or H-2/CO2 mixtures increased the performance loss. After longterm performance test for 500 h, the observed voltage drop at constant current density was obtained as similar to 14.8% for H-2/CO2/CO (75/22/3) mixture. The overall results suggest that the anode side gas mixture with up to 5 vol % CO can be supplied to the HT-PEMFC stack directly from the reformer. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/66288
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2018.05.085
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance
Bayrakceken, Ayse; Erkan, Serdar; Turker, Lemi; Eroğlu, İnci (Elsevier BV, 2008-01-01)
The objective of this study is to determine the effects of various factors on the performance of proton exchange membrane (PEM) fuel cell. These factors are membrane thickness, hot-pressing conditions of the gas diffusion layer (GDL) either onto the membrane or membrane electrode assembly (MEA) and Teflon:carbon ratio in the GDL on PEM fuel cell performance. Homemade five-layer and commercial three-layer MEAs were used in the experiments. Nafion (R) 112 and 115 which have nominal thicknesses of 50 and 125 m...
PEM fuel cell degradation effects on the performance of a stand-alone solar energy system
ÖZDEN, Ender; Tarı, İlker (Elsevier BV, 2017-05-04)
After comparing fresh and degraded performances of Polymer Electrolyte Membrane (PEM) based components of a hydrogen cycle with the help of computational fluid dynamics simulations, recently established stand-alone solar energy system producing hydrogen for energy storage is investigated focusing on the effects of degradation of fuel cells on the overall performance of the system. A complete model of the system has been developed using TRNSYS, and a degraded PEM Fuel Cell Subsystem has been incorporated int...
The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications
Baysal, M. B.; SÜRÜCÜ, GÖKHAN; DELİGÖZ, ENGİN; ÖZIŞIK, HAVVA (Elsevier BV, 2018-12-27)
Density functional theory calculations are used herein to explore the effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides. The polycrystalline elastic moduli, Poisson's ratios and Debye temperatures are calculated based on the single-crystal elastic constants and Voigt-Reuss-Hill approximations. It is also found that all these materials are metallic behavior, ductile and anisotropic in nature. The mechanical anisotropy is discussed via several anisotropy indice...
Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity
Bayer, IS; Eroğlu, İnci; Turker, L (Wiley, 2001-03-10)
The photogalvanic effect in electrochemical cells, employing aqueous Methylene blue and Fe(II)/Fe(III) couple electrolyte and nickel-mesh electrodes, were experimentally investigated. Five different standard H-cell configurations were set-up by modifying the electrolyte. Long-term open-circuit Voltage measurements were conducted in order to test the stability of the cells. Light on-off reproducibility experiments were also carried out during lengthy cell operations. By comparing experimental quantum yield w...
Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor
Boran, Asli; Erkan, Serdar; Özkar, Saim; Eroglu, Inci (Wiley, 2013-04-01)
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an incre...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. DEVRİM, A. Albostan, and H. Devrim, “Experimental investigation of CO tolerance in high temperature PEM fuel cells,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 18672–18681, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66288.