Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity
Date
2001-03-10
Author
Bayer, IS
Eroğlu, İnci
Turker, L
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
The photogalvanic effect in electrochemical cells, employing aqueous Methylene blue and Fe(II)/Fe(III) couple electrolyte and nickel-mesh electrodes, were experimentally investigated. Five different standard H-cell configurations were set-up by modifying the electrolyte. Long-term open-circuit Voltage measurements were conducted in order to test the stability of the cells. Light on-off reproducibility experiments were also carried out during lengthy cell operations. By comparing experimental quantum yield with theoretical predictions, it was found that the cells operate on differential electrode kinetics. Oxidation of the illuminated electrode was detected. This affected the current-voltage characteristics of the cells after a sufficiently long cell operation. Schottky junction treatment was used to model the electrolyte-electrode junction. After calculating the ratio between the majority carrier (electron) current density and minority carrier (hole) current density, we concluded that the oxidation of the electrodes contributes positively to the cell performance since the electrode-electrolyte interface shows unipolar Schottky diode characteristics. Copyright (C) 2001 John Wiley & Sons, Ltd.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Nuclear Energy and Engineering
URI
https://hdl.handle.net/11511/58014
Journal
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
DOI
https://doi.org/10.1002/er.672
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Mo doping of layered Li (NixMnyCo1-x-y-zMz)O-2 cathode materials for lithium-ion batteries
PİŞKİN, BERKE; Uygur, Cansu Savas; Aydınol, Mehmet Kadri (Wiley, 2018-10-10)
We systematically investigated the effects of Mo doping on the structure, morphology, and the electrochemical performance of Li (NixMnyCo1-x-y-zMz)O-2 (NMC) cathode materials for Li-ion batteries. Layered NMC cathodes were synthesized with the ratio of 111, 622, and 226 via spray pyrolysis yielding submicron-sized aggregates in the shape of hollow spherical particles. We performed X-ray diffraction analyses to determine the present phases and the ordering in structure. X-ray diffraction pattern of Mo-doped ...
Experimental investigation of CO tolerance in high temperature PEM fuel cells
DEVRİM, YILSER; Albostan, Ayhan; Devrim, Huseyin (Elsevier BV, 2018-10-04)
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to th...
Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor
Boran, Asli; Erkan, Serdar; Özkar, Saim; Eroglu, Inci (Wiley, 2013-04-01)
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an incre...
Analytical and Numerical Modeling of CO2 Sequestration in Deep Saline Aquifers
Ozgur, E.; Gumrah, F. (Informa UK Limited, 2010-01-01)
The analytical and numerical modeling of CO2 sequestration in deep saline aquifers having different rock and fluid properties was studied under diffusion and convection mechanisms. In a diffusion dominated system, an aquifer with 100 m thickness was saturated with CO2 after 10,000,000 years. It was much earlier in a convective dominant system. In the diffusion process, the dissolution of CO2 in aquifer increased with porosity increase; however, in a convection dominant process dissolution of CO2 in aquifer ...
Comparative study of PV/PEM fuel cell hybrid energy system based on methanol and water electrolysis
Budak, Yagmur; DEVRİM, YILSER (Elsevier BV, 2019-01-01)
In this study, we investigated the comparative analysis of a solar-fuel cell hybrid system based on water and methanol electrolysis. The proposed system comprises PV, electrolyzer and proton exchange membrane fuel cell (PEMFC). The hybrid system is designed to supply the hydrogen (H-2) needed of the PEMFC system and also to fulfill the H-2 requirement of other applications. The actual data of solar irradiation of Izmir, Turkey are used in the simulation. The methanol and water electrolyzers were designed fo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Bayer, İ. Eroğlu, and L. Turker, “Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity,”
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
, pp. 207–222, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58014.