Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GLN/P
Date
1992-05-01
Author
AKYILDIZ, E
LASCOUX, A
PRAGACZ, P
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
131
views
0
downloads
Cite This
Let GL(n) be the group of n x n invertible complex matrices, and P a parabolic subgroup of GL(n). In this paper we give a geometric description of the cohomology ring of a Schubert subvariety Y of GL(n)/P. Our main result (Theorem 3.1) states that the coordinate ring A(Y intersect Z) of the scheme-theoretic intersection of Y and the zero scheme Z of the vector field V associated to a principal regular nilpotent element n of gl(n) is isomorphic to the cohomology algebra H*(Y ; C) of Y. This theorem was conjectured for any reductive algebraic group G in [4], and it was proved for the Grassmannian manifolds in [2]. We were recently informed that Professor D. H. Peterson has just proved that GL(n) is exactly the algebraic group G where the cohomology ring of any Schubert subvariety Y of the space G/B is isomorphic to A(Y intersect Z). Here B stands for a Borel subgroup of G. It is also interesting to note that the cohomology ring of the union of two Schubert subvarieties in GL(n)/P may not admit such a description. This result is due to Professor J. B. Carrell.
Subject Keywords
Geometry and Topology
,
Algebra and Number Theory
,
Analysis
URI
https://hdl.handle.net/11511/66478
Journal
JOURNAL OF DIFFERENTIAL GEOMETRY
DOI
https://doi.org/10.4310/jdg/1214448268
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On the generating graphs of symmetric groups
Erdem, Fuat (Walter de Gruyter GmbH, 2018-07-01)
Let S-n and A(n) be the symmetric and alternating groups of degree n, respectively. Breuer, Guralnick, Lucchini, Maroti and Nagy proved that the generating graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian for sufficiently large n. However, their proof provided no information as to how large n needs to be. We prove that the graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian provided that n (3) 107.
Tight contact structures on hyperbolic three-manifolds
Arıkan, Mehmet Fırat (Elsevier BV, 2017-11-01)
Let Sigma(g) denote a closed orientable surface of genus g >= 2. We consider a certain infinite family of Sigma(g)-bundles over circle whose monodromies are taken from some collection of pseudo-Anosov diffeomorphisms. We show the existence of tight contact structure on every closed 3-manifold obtained via rational r-surgery along a section of any member of the family whenever r not equal 2g - 1. Combining with Thurston's hyperbolic Dehn surgery theorem, we obtain infinitely many hyperbolic closed 3-manifold...
EUCLIDEAN POLYNOMIALS FOR CERTAIN ARITHMETIC PROGRESSIONS AND THE MULTIPLICATIVE GROUP OF F-p2
Berktav, Kadri İlker; Özbudak, Ferruh (2022-06-01)
Let f(x) be a polynomial with integer coefficients. We say that the prime p is a prime divisor of f(x) if p divides f(m) some integer m. For each positive integer n, we give an explicit construction of a polynomial all of whose prime divisors are +/- 1 modulo (8n + 4). Consequently, this specific polynomial serves as an "Euclidean" polynomial for the Euclidean proof of Dirichlet's theorem on primes in the arithmetic progression +/- 1 (mod 8n + 4). Let F-p2 be a finite field with p(2) elements. We use that t...
Invariant subspaces for banach space operators with a multiply connected spectrum
Yavuz, Onur (Springer Science and Business Media LLC, 2007-07-01)
We consider a multiply connected domain Omega = D \U (n)(j= 1) (B) over bar(lambda(j), r(j)) where D denotes the unit disk and (B) over bar(lambda(j), r(j)) subset of D denotes the closed disk centered at lambda(j) epsilon D with radius r(j) for j = 1,..., n. We show that if T is a bounded linear operator on a Banach space X whose spectrum contains delta Omega and does not contain the points lambda(1),lambda(2),...,lambda(n), and the operators T and r(j)( T -lambda I-j)(-1) are polynomially bounded, then th...
A characterization of riesz n-morphisms and applications
AKKAR ERCAN, ZÜBEYDE MÜGE; Önal, Süleyman (Informa UK Limited, 2008-03-01)
Let X-1 I X-2,..., X-n be realcompact spaces and Z he a topological space. Let pi : C(X-1)X C(X-2) X... X C(X-n)-> C(Z) be a Riesz n-morphism. We show that there exist functions sigma(i) : Z -> X-i (i = 1, 2,..., n) and w epsilon C(Z) such that
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. AKYILDIZ, A. LASCOUX, and P. PRAGACZ, “COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GLN/P,”
JOURNAL OF DIFFERENTIAL GEOMETRY
, pp. 511–519, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66478.