The momentum four-vector in Brans-Dicke wormholes

Download
2007-05-01
Pirinccioglu, Nurettin
Acikgoez, Irfan
Salti, Mustafa
In this work, in order to compute energy and momentum distributions (due to matter plus fields including gravitation) associated with the Brans-Dicke wormhole solutions we consider Moller's energy-momentum complexes both in general relativity and the teleparallel gravity, and the Einstein energy-momentum formulation in general relativity. We find exactly the same energy and momentum in three of the formulations. The results obtained in teleparallel gravity is also independent of the teleparallel dimensionless coupling parameter, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. Furthermore, our results also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Moller energy-momentum complex is a powerful concept of energy and momentum. (c) The results calculated supports the hypothesis by Cooperstock that the energy is confined to the region of non-vanishing energy-momentum tensor of matter and all non-gravitational fields.
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS

Suggestions

On the Moller energy associated with black holes
Salti, Mustafa; Aydogdu, Oktay (Springer Science and Business Media LLC, 2006-12-01)
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Moller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Si...
The momentum 4-vector in bulk viscous Bianchi type-V space-time
Aydogdu, Oktay; Salti, Mustafa (Springer Science and Business Media LLC, 2006-08-01)
Using the Einstein and Bergmann-Thomson prescriptions, the energy and momentum distributions for the Bianchi type-V bulk viscous space-time are evaluated in both general relativity and the teleparallel gravity (the tetrad theory of gravity). It is shown that for the Bianchi type-V bulk viscous solution, the energy and momentum due to matter and fields including gravity are the same in both the methods used. This paper indicates an important point that these energy-momentum definitions agree with each other ...
Energy of a charged wormhole
Salti, Mustafa; Aydogdu, Oktay (Springer Science and Business Media LLC, 2006-10-01)
The Moller energy(due to matter and fields including gravity) distribution of the traversable Lorentzian wormhole space-time by the scalar field or electric charged is studied in two different approaches of gravity such as general relativity and tele-parallel gravity. The results are found exactly the same in these different approximations. The energy found in tele-parallel gravity is also independent of the tele-parallel dimensionless coupling constant, which means that it is valid in any tele-parallel mod...
THE ENERGY LOCALIZATION PROBLEM AND THE RENORMALIZED VACUUM ENERGY IN STATIC ROBERTSON-WALKER UNIVERSES
BAYM, SS (Springer Science and Business Media LLC, 1994-10-01)
We calculate the renormalized quantum vacuum energy inside a spherical boundary for the massless conformal scalar field in curved background Robertson-Walker geometry. We use the mode sum method with an exponential cuttoff. In our calculations we do not make assumptions about the exterior geometry or the global topology of the universe.
Energy associated with the Gibbons-Maeda dilaton spacetime
Aydogdu, Oktay; Salti, Mustafa; Korunur, Murat; Acikgoz, Irfan (Springer Science and Business Media LLC, 2006-12-01)
In order to obtain energy and momentum (due to matter and fields including gravitation) distributions of the Gibbons-Maeda dilaton spacetime, we use the Moller energy-momentum prescription both in Einstein"s theory of general relativity and teleparallel gravity. We find the same energy distribution for a given metric in both of these different gravitation theories. Under two limits, we also calculate energy associated with two other models such as the Garfinkle-Horowitz-Strominger dilaton spacetime and the ...
Citation Formats
N. Pirinccioglu, I. Acikgoez, and M. Salti, “The momentum four-vector in Brans-Dicke wormholes,” INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, pp. 1318–1333, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66530.