Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy associated with the Gibbons-Maeda dilaton spacetime
Download
index.pdf
Date
2006-12-01
Author
Aydogdu, Oktay
Salti, Mustafa
Korunur, Murat
Acikgoz, Irfan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
68
downloads
Cite This
In order to obtain energy and momentum (due to matter and fields including gravitation) distributions of the Gibbons-Maeda dilaton spacetime, we use the Moller energy-momentum prescription both in Einstein"s theory of general relativity and teleparallel gravity. We find the same energy distribution for a given metric in both of these different gravitation theories. Under two limits, we also calculate energy associated with two other models such as the Garfinkle-Horowitz-Strominger dilaton spacetime and the Reissner-Nordstrom spacetime. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid in any teleparallel model. Our result also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution for a given spacetime and (b) the viewpoint of Lessner that the Moller energy-momentum complex is a powerful concept of energy and momentum (c) the hypothesis of Vagenas that there is a connection between the coefficients of the energy-momentum expression of Einstein and those of Moller.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/67758
Journal
FOUNDATIONS OF PHYSICS LETTERS
DOI
https://doi.org/10.1007/s10702-006-1059-5
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
On the relative energy associated with space-times of diagonal metrics
Korunur, Murat; Salt, Mustafa; Havare, Ali (Springer Science and Business Media LLC, 2007-05-01)
In order to evaluate the energy distribution (due to matter and fields including gravitation) associated with a space-time model of generalized diagonal metric, we consider the Einstein, Bergmann-Thomson and Landau-Lifshitz energy and/or momentum definitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We find same energy distribution using Einstein and Bergmann-Thomson formulations, but we also find that the energy-momentum prescription of...
Energy of a charged wormhole
Salti, Mustafa; Aydogdu, Oktay (Springer Science and Business Media LLC, 2006-10-01)
The Moller energy(due to matter and fields including gravity) distribution of the traversable Lorentzian wormhole space-time by the scalar field or electric charged is studied in two different approaches of gravity such as general relativity and tele-parallel gravity. The results are found exactly the same in these different approximations. The energy found in tele-parallel gravity is also independent of the tele-parallel dimensionless coupling constant, which means that it is valid in any tele-parallel mod...
The momentum 4-vector in bulk viscous Bianchi type-V space-time
Aydogdu, Oktay; Salti, Mustafa (Springer Science and Business Media LLC, 2006-08-01)
Using the Einstein and Bergmann-Thomson prescriptions, the energy and momentum distributions for the Bianchi type-V bulk viscous space-time are evaluated in both general relativity and the teleparallel gravity (the tetrad theory of gravity). It is shown that for the Bianchi type-V bulk viscous solution, the energy and momentum due to matter and fields including gravity are the same in both the methods used. This paper indicates an important point that these energy-momentum definitions agree with each other ...
On the energy-momentum in closed universes
Salti, M (Springer Science and Business Media LLC, 2006-02-01)
Using the Moller, Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum definitions both in general relativity and teleparallel gravity, we find the energy-momentum of the closed universe based on the generalized Bianchi-I type metric.
Moller's energy in the dyadosphere of a charged black hole
Aydogdu, Oktay; Salti, Mustafa (Springer Science and Business Media LLC, 2006-08-01)
We use the Moller energy-momentum complex both in general relativity and teleparallel gravity to evaluate energy distribution (due to matter plus fields including gravity) in the dyadosphere region for Reissner-Nordstrom black hole. We found the same and acceptable energy distribution in these different approaches of the Moller energy-momentum complex. Our teleparallel. gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid in any teleparal...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Aydogdu, M. Salti, M. Korunur, and I. Acikgoz, “Energy associated with the Gibbons-Maeda dilaton spacetime,”
FOUNDATIONS OF PHYSICS LETTERS
, pp. 709–721, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67758.