The momentum 4-vector in bulk viscous Bianchi type-V space-time

Download
2006-08-01
Aydogdu, Oktay
Salti, Mustafa
Using the Einstein and Bergmann-Thomson prescriptions, the energy and momentum distributions for the Bianchi type-V bulk viscous space-time are evaluated in both general relativity and the teleparallel gravity (the tetrad theory of gravity). It is shown that for the Bianchi type-V bulk viscous solution, the energy and momentum due to matter and fields including gravity are the same in both the methods used. This paper indicates an important point that these energy-momentum definitions agree with each other not only in general relativity but also in teleparallel gravity and sustains the results obtained by some physicist who show that the energy-momentum definitions of Einstein, Landau-Lifshitz, Papapetrou, Weinberg, Penrose and Bergmann-Thomson complexes give the same energy expression in general relativity.
CZECHOSLOVAK JOURNAL OF PHYSICS

Suggestions

Energy associated with the Gibbons-Maeda dilaton spacetime
Aydogdu, Oktay; Salti, Mustafa; Korunur, Murat; Acikgoz, Irfan (Springer Science and Business Media LLC, 2006-12-01)
In order to obtain energy and momentum (due to matter and fields including gravitation) distributions of the Gibbons-Maeda dilaton spacetime, we use the Moller energy-momentum prescription both in Einstein"s theory of general relativity and teleparallel gravity. We find the same energy distribution for a given metric in both of these different gravitation theories. Under two limits, we also calculate energy associated with two other models such as the Garfinkle-Horowitz-Strominger dilaton spacetime and the ...
The momentum four-vector in Brans-Dicke wormholes
Pirinccioglu, Nurettin; Acikgoez, Irfan; Salti, Mustafa (Springer Science and Business Media LLC, 2007-05-01)
In this work, in order to compute energy and momentum distributions (due to matter plus fields including gravitation) associated with the Brans-Dicke wormhole solutions we consider Moller's energy-momentum complexes both in general relativity and the teleparallel gravity, and the Einstein energy-momentum formulation in general relativity. We find exactly the same energy and momentum in three of the formulations. The results obtained in teleparallel gravity is also independent of the teleparallel dimensionle...
On the relative energy associated with space-times of diagonal metrics
Korunur, Murat; Salt, Mustafa; Havare, Ali (Springer Science and Business Media LLC, 2007-05-01)
In order to evaluate the energy distribution (due to matter and fields including gravitation) associated with a space-time model of generalized diagonal metric, we consider the Einstein, Bergmann-Thomson and Landau-Lifshitz energy and/or momentum definitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We find same energy distribution using Einstein and Bergmann-Thomson formulations, but we also find that the energy-momentum prescription of...
Conserved charges in extended theories of gravity
Adami, Hamed; Setare, Mohammad Reza; Sisman, Tahsin Cagri; Tekin, Bayram (Elsevier BV, 2019-11-20)
We give a detailed review of construction of conserved quantities in extended theories of gravity for asymptotically maximally symmetric spacetimes and carry out explicit computations for various solutions. Our construction is based on the Killing charge method, and a proper discussion of the conserved charges of extended gravity theories with this method requires studying the corresponding charges in Einstein's theory with or without a cosmological constant. Hence we study the ADM charges (in the asymptoti...
On the energy-momentum in closed universes
Salti, M (Springer Science and Business Media LLC, 2006-02-01)
Using the Moller, Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum definitions both in general relativity and teleparallel gravity, we find the energy-momentum of the closed universe based on the generalized Bianchi-I type metric.
Citation Formats
O. Aydogdu and M. Salti, “The momentum 4-vector in bulk viscous Bianchi type-V space-time,” CZECHOSLOVAK JOURNAL OF PHYSICS, pp. 789–798, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64569.