Analysis of a Wind Energy Conversion System with Doubly-Fed Induction Generator in healthy and Fault Condition via Simulation

2011-09-10
Giaourakis, Dimitrios G.
Safacas, Athanasios N.
Tsotoulidis, Savvas
In this paper, a wind energy conversion system that uses the "Cascade technology" especially the structure of Doubly-Fed Induction Generator (DFIG) is presented and analyzed. Moreover, a simulation of this wind energy conversion system under fault conditions in MATLAB/SIMULINK is done and the results are evaluated. Open-circuit faults in one IGBT or in two IGBTs are studied.

Suggestions

A Detailed Power Loss Analysis of Modular Multilevel Converter
Erturk, Feyzullah; Hava, Ahmet Masum (2015-03-19)
This paper thoroughly examines the semiconductor power loss characteristics of modular multilevel converters (MMC). Power loss behavior is examined under different pulse width modulation (PWM) methods and operating conditions. The effects of stored energy level, circulating current control utilization, power factor and submodule voltage balancing method on power loss are studied. Furthermore, unbalanced power losses and specific semiconductor stresses within a submodule are visualized by investigating the l...
NUMERICAL INVESTIGATION OF BUBBLING FLUIDIZED BED TO BE USED AS THERMAL ENERGY STORAGE INTEGRATED TO HIGH-TEMPERATURE CONCENTRATED SOLAR POWER
HİÇDURMAZ, SERDAR; Tarı, İlker (Begell House, 2018-01-01)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analyzed with the help of ANSYS Fluent 17.0. Hydrodynamics of the bubbling fluidized sand bed of 0.28 m × 1 m × 0.025 m dimensions to be used as a direct contact heat exchanger is modeled and validated. Geldart B-type particles with diameter of 275 micrometers and density of 2500 kg/m3 are used in modeling of bubbling fluidized sand bed. A Syamlal−O'Brien drag model with restitution coefficient of 0.99 ...
SIMULATION AND OPTIMIZATION OF 3 EXISTING ETHYLBENZENE DEHYDROGENATION REACTORS IN SERIES
ONAL, I; YALCIN, N; UYGUN, E; OZTURK, H (1990-01-01)
A computer model was developed to simulate the performace of three commercial reactors in series for dehydrogenation of ethylbenzene to styrene. The model can be used to predict the performance of dehydrogenation catalysts in the commercial reactors. In the model program, flow of the reactant stream through the catalyst bed is treated as one-dimensional plug flow. The kinetic rate parameters were obtained by using the Conjugate Direction method as a multivariable search technique so as to minimize the su...
Analysis and Fault Tolerant Control of a Five-Phase Axial Flux Permanent Magnet Synchronous Machine
Bayazıt, Göksenin Hande; Keysan, Ozan; Department of Electrical and Electronics Engineering (2021-9-06)
This study investigates the fault-tolerance capability of an air-cored, axial flux, five-phase permanent magnet synchronous machine. The air-cored stator is designed by adopting a novel winding topology that is called flat winding. The coils of flat winding are made by bending and grouping one within another of the flat wires made of a laser-cut thin aluminum sheet. This topology provides superior current ratings, better cooling performance, and a robust structure for the stator. As the coils are covered w...
New strategy for optimization of output power of a DFIG wind turbine
Abedinzadeh, Taller; Ehsan, Mehdi; Afsharirad, Hadi; Nazaraliloo, Mohammad (2011-09-10)
This paper presents a method to maximize the output power of a DFIG wind turbine. In this method, an optimization technique based on mathematical analysis has been used. The modeling of DFIG is performed using MATLAB.
Citation Formats
D. G. Giaourakis, A. N. Safacas, and S. Tsotoulidis, “Analysis of a Wind Energy Conversion System with Doubly-Fed Induction Generator in healthy and Fault Condition via Simulation,” 2011, p. 73, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66914.