Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New strategy for optimization of output power of a DFIG wind turbine
Date
2011-09-10
Author
Abedinzadeh, Taller
Ehsan, Mehdi
Afsharirad, Hadi
Nazaraliloo, Mohammad
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
This paper presents a method to maximize the output power of a DFIG wind turbine. In this method, an optimization technique based on mathematical analysis has been used. The modeling of DFIG is performed using MATLAB.
Subject Keywords
Wind turbine
,
DFIG
,
Optimization of output power
,
Rotor voltage
URI
https://hdl.handle.net/11511/67714
Collections
Unclassified, Conference / Seminar
Suggestions
OpenMETU
Core
Dynamic modeling, control and adaptive envelope protection system for horizontal axiswind turbines
Şahin, Mustafa; Yavrucuk, İlkay; Department of Aerospace Engineering (2018)
In this thesis study, a wind turbine envelope protection system is introduced to protect turbines throughout the below and above rated regions. The proposed protection system, which is based on a neural network, adapts to various turbines and operational conditions. It can keep the turbine within pre-defined envelope limits whenever a safe operation is about to be violated. The avoidance is realized by control limiting technique applied to the blade pitch controller output, thereby adjusting the blade pitch...
Dynamic modelling and simulation of a wind turbine
Altuğ, Ayşe Hazal; Yavrucuk, İlkay; Department of Aerospace Engineering (2015)
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments...
Analysis of a Wind Energy Conversion System with Doubly-Fed Induction Generator in healthy and Fault Condition via Simulation
Giaourakis, Dimitrios G.; Safacas, Athanasios N.; Tsotoulidis, Savvas (2011-09-10)
In this paper, a wind energy conversion system that uses the "Cascade technology" especially the structure of Doubly-Fed Induction Generator (DFIG) is presented and analyzed. Moreover, a simulation of this wind energy conversion system under fault conditions in MATLAB/SIMULINK is done and the results are evaluated. Open-circuit faults in one IGBT or in two IGBTs are studied.
Design and analysis of test rig for small scale wind turbine blade
İçen, Mustafa.; Çöker, Demirkan; Department of Aerospace Engineering (2019)
In this thesis, a test setup for the experimental 5 meter RÜZGEM wind turbine blade and that can be used for small scale wind turbine blades up to 9 meter is designed and analyzed. The purpose of this thesis is to help establishing the test infrastructure under METUWIND project such as NREL, RISØ, CRES. The literature on the existing facilities is reviewed. After that, RÜZGEM wind turbine blade is introduced and design loads are presented. To apply these loads appropriately to the blade, the moment distribu...
Experimental study on power curtailment of three in-line turbines
Bartl, Jan; Ostovan, Yasar; Uzol, Oğuz; Saetran, Lars (Elsevier BV; Elsevier BV; 2017-01-20)
A dataset of wind tunnel power and wake flow measurements on a setup of three aligned model wind turbines is presented. The power outputs of the three turbines are in good agreement with measurements from a full-scale wind farm of similar inter-turbine spacing. A comparison of the wake flow behind the first row and the second row shows a significantly higher mean velocity loss behind the second row justifying a further power drop from the second to the third row turbine. Curtailing the front row turbine to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Abedinzadeh, M. Ehsan, H. Afsharirad, and M. Nazaraliloo, “New strategy for optimization of output power of a DFIG wind turbine,” 2011, p. 69, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67714.