Design and Optimization of an Electromagnetic Micro Energy Scavenger with Parylene Cantilevers

2007-11-29
This paper presents the design, optimization, and implementation of an electromagnetic micro energy scavenger that uses an array of parylene cantilevers on which planar coils are fabricated. The coils are connected electrically in series to increase the voltage that is generated by virtue of the relative motion between the coils and the magnet. A detailed mathematical modeling and optimization of the design for various cases are carried out.
PowerMEMS Conference, 2007

Suggestions

Design and optimization of nanooptical couplers based on photonic crystals involving dielectric rods of varying lengths
Yazar, Şirin; Ergül, Özgür Salih (2022-1-01)
This study presents design and optimization of compact and efficient nanooptical couplers involving photonic crystals. Nanooptical couplers that have single and double input ports are designed to obtain efficient transmission of electromagnetic waves in desired directions. In addition, these nanooptical couplers are cascaded by adding one after another to realize electromagnetic transmission systems. In the design and optimization of all these nanooptical couplers, the multilevel fast multipole algorithm, w...
Design and Development of 1-D CMUT Array with Diamond Membrane
Karacaer, Berkay; Bayram, Barış; Department of Electrical and Electronics Engineering (2022-1-25)
This thesis presents a new microfabrication method of 1-D capacitive micromachined ultrasonic transducer (CMUT) array featuring diamond membrane. This microfabrication method for diamond membrane CMUT array is based on the sacrificial etching of polysilicon in XeF2 plasma. The stiction problem of membranes due to capillary force in wet etching processes is avoided since the XeF2 is a gaseous chemical in plasma form that etches silicon and its derivatives with very high selectivity over silicon dioxide and d...
Design and implementation of microwave lumped components and system integration using MEMS technology
Temoçin, Engin Ufuk; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the design and fabrication of coplanar waveguide to microstrip transitions and planar spiral inductors, and the design of metal-insulator-metal capacitors, a planar band-pass, and a low-pass filter structures as an application for the inductors and capacitors using the RF MEMS technology. This thesis also includes a packaging method for RF MEMS devices with the use of “benzocyclobutene” as bonding material. The transition structures are formed by four different methods between coplanar ...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Design and implementation of high fill factor structures on low-cost uncooled infrared sensors
Ertürk, Ozan; Akın, Tayfun; Department of Electrical and Electronics Engineering (2015)
This thesis presents the design and implementation steps of high fill factor structures for existing SOI diode low-cost microbolometer FPAs. Advancements in uncooled infrared detectors enable high performance military grade uncooled microbolometers as well as ultra-low-cost infrared imagers for civilian applications. The trend in uncooled microbolometers to reduce the pixel pitch has become increasingly significant to lower the cost of detector and system integration due to optics, and increase spatial reso...
Citation Formats
İ. Sarı, R. T. Balkan, and H. Külah, “Design and Optimization of an Electromagnetic Micro Energy Scavenger with Parylene Cantilevers,” presented at the PowerMEMS Conference, 2007, Freiburg, Almanya, 2007, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/71340.