Methodological issues in building, training, and testing artificial neural networks in ecological applications

Ozesmi, Stacy L.
Tan, Can O.
Ozesmi, Uygar
We evaluate the use of artificial neural networks, particularly the feedforward multilayer perceptron with back-propagation for training (MLP), in ecological modelling and make suggestions on its use. in MLP modelling, there are no assumptions about the underlying form of the data that must be met as in standard statistical techniques. Instead, researchers must clarify the process of modelling, as this is most critical to how the model performs and is interpreted. Overfitting on the data, a potential problem, can be avoided by limiting the complexity of the model and by using techniques such as weight decay, training with noise, and limiting the training of the network. Methods on when to stop training include: (1) early stopping based on cross-validation, (2) stopping after a analyst defined error is reached or after the error levels off, and (3) use of a test data set. The third method is not ideal as the test data set is then not independent of model development and the resulting model may have little generalizability. The importance of an independent data set cannot be overemphasized as we found dramatic differences in model accuracy assessed with prediction accuracy on the training data set, as estimated with bootstrapping, and from use of an independent data set. The comparison of the artificial neural network with a general linear model (GLM) as a standard procedure is recommended because a GLM may perform as well or better than the MLP. In such cases, there are no interactions or non-linear terms that need to be modelled and it will save time to use the GLM. Techniques such as sensitivity analyses, input variable relevances, neural interpretation diagrams, randomization tests, and partial derivatives should be used to make MLP models more transparent, and further our ecological understanding, an important goal of the modelling process. Based on our experience we discuss how to build an MLP model and how to optimize the parameters and architecture. The process should be explained explicitly to make the MLP models more readily accepted by the ecological research community at large, as well as to make it possible to replicate the research. (c) 2005 Published by Elsevier B.V.


Case studies on the use of neural networks in eutrophication modeling
Karul, C; Soyupak, S; Cilesiz, AF; Akbay, N; Germen, E (2000-10-30)
Artificial neural networks are becoming more and more common to be used in development of prediction models for complex systems as the theory behind them develops and the processing power of computers increase. A three layer Levenberg-Marquardt feedforward learning algorithm was used to model the eutrophication process in three water bodies of Turkey (Keban Dam Reservoir, Mogan and Eymir Lakes). Despite the very complex and peculiar nature of Keban Dam, a relatively good correlation (correlation coefficient...
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Optimization of well placement geothermal reservoirs using artificial intelligence
Akın, Serhat; Kök, Mustafa Verşan (2010-06-01)
This research proposes a framework for determining the optimum location of an injection well using an inference method, artificial neural networks and a search algorithm to create a search space and locate the global maxima. A complex carbonate geothermal reservoir (Kizildere Geothermal field, Turkey) production history is used to evaluate the proposed framework. Neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited numb...
Representing temporal knowledge in connectionist expert systems
Alpaslan, Ferda Nur (1996-09-27)
This paper introduces a new temporal neural networks model which can be used in connectionist expert systems. Also, a Variation of backpropagation algorithm, called the temporal feedforward backpropagation algorithm is introduced as a method for training the neural network. The algorithm was tested using training examples extracted from a medical expert system. A series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The experiments indicated that the alg...
Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Citation Formats
S. L. Ozesmi, C. O. Tan, and U. Ozesmi, “Methodological issues in building, training, and testing artificial neural networks in ecological applications,” ECOLOGICAL MODELLING, pp. 83–93, 2006, Accessed: 00, 2020. [Online]. Available: