Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Replacement of Electrical (Load) Drives by a Hardware-in-the-Loop System
Date
2011-09-10
Author
Kennel, Ralph M.
Boller, Till
Holtz, Joachim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
This paper presents an interesting approach for hardware-in-the-loop testing of voltage source inverters for drive applications. For this purpose the inverter under test is not connected to a real machine, but to a second inverter instead, which behaves like an electrical machine. The power capability of the so-called "Virtual Machine" is increased by sequential switching of parallel connected standard inverters. The parallel connected inverters can be of the same type as the inverter under test. Hence there exists no power limit for drive inverter testing with respect to the product range of the manufacturer.
Subject Keywords
Hardware-in-the-loop
,
PHiL
,
VSI
,
Electronic load
,
Sequential switching
,
Power electronics testing
URI
https://hdl.handle.net/11511/67030
Collections
Unclassified, Conference / Seminar
Suggestions
OpenMETU
Core
High performance readout electronics for uncooled infrared detector arrays
Yıldırım, Ömer Özgür; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabr...
Implementation of 1 kV on LV feeders: a smart alternative to MV line investments to solve voltage drop problems at LV systems
OZENA, Kadir; CEBECI, Mahmut E.; TOR, Osman B.; BATAR, Gokhan; KILIC, Andac; TURKMEN, Ulfet; Güven, Ali Nezih (2017-04-21)
This paper presents methodology and on-site pilot implementation of utilizing 1 kV at low voltage (LV) feeders as an alternative to medium voltage (MV) line investments to solve voltage drop problems at LV systems. Typically distribution companies solve voltage drop problems of LV system by installing a new MV/LV transformer and transferring outmost loads of the existing transformer to the new transformer. This necessitates installation of MV line between the existing and new transformer. The implementation...
Reliability improvement of RF MEMS devices based on lifetime measurements
Gürbüz, Ozan Doğan; Demir, Şimşek; Akın, Tayfun; Department of Electrical and Electronics Engineering (2010)
This thesis presents fabrication of shunt, capacitive contact type RF MEMS switches which are designed according to given mm-wave performance specifications. The designed switches are modified for investigation in terms of reliability and lifetime. To observe the real-time performance of switches a time domain measurement setup is established and a CV (capacitance vs. voltage) curve measurement system is also included to measure CV curves, pull-in and hold-down voltages and the shifts of these due to actuat...
Design and implementation of a sic based three phase grid-connected current source inverter for solar applications
Bay, Olcay; Ermiş, Muammer; Bilgin, Hazım Faruk; Department of Electrical and Electronics Engineering (2017)
In this thesis, analysis, design and implementation of a three-phase 400V, 20 kVA Current Source Inverter (CSI) have been carried out for grid-connected photovoltaic applications based on the multi-string inverter concept. This inverter can be used in large scale photovoltaic (PV) applications by connecting many in parallel at 400V and coupling to medium voltage through a common transformer. The power stage of the inverter is based on the basic full-bridge CSC topology and each power semiconductor which mus...
Zero-level packaging of microwave and millimeterwave MEMS components
Comart, İlker; Demir, Şimşek; Akın, Tayfun; Department of Electrical and Electronics Engineering (2010)
This thesis presents realization of two shunt, capacitive contact RF MEMS switches and two RF MEMS SPDT switches for microwave and millimeter-wave applications, two zero-level package structures for RF MEMS switches and development trials of a BCB based zero level packaging process cycle. Two shunt, capacitive contact RF MEMS switches for 26 GHz and 12 GHz operating frequencies are designed, fabricated and consistencies between fabricated devices and designs are shown through RF measurements. For the switch...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. M. Kennel, T. Boller, and J. Holtz, “Replacement of Electrical (Load) Drives by a Hardware-in-the-Loop System,” 2011, p. 17, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67030.