CONDUCTIVE PROPERTIES OF POLY(4-VINYLPYRIDINE) POLY(DIMETHYLSILOXANE) BLOCK-COPOLYMERS DOPED WITH TETRACYANOQUINODIMETHANE

1993-01-01
NUGAY, N
KUCUKYAVUZ, Z
KUCUKYAVUZ, S
Poly(4-vinylpyridine)-poly(dimethylsiloxane) (P4VP-PDMS) block copolymers with various compositions were prepared by anionic polymerization. The 4VP block was quaternized with methyl iodide and reacted with 7,7',8,8'-tetracyanoquinodimethane (TCNQ), which is in both anion radical (TCNQ-.) and neutral form (TCNQ0). The products were then characterized by H-1 nuclear magnetic resonance and Fourier-transform infra-red spectroscopy, scanning electron microscopy and differential scanning calorimetry techniques. The electrical conductivities of processable and flexible films of these block copolymers were measured with the four-probe method and found to be as high as 10(-2) S cm-1. The optimal TCNQ0 doping for which the conductivities are highest were also determined.

Suggestions

Insertion of Fischer Carbene Complexes into the Carbon-Carbon Bond of 1,2-Diphenylcyclopropenone: Formation of Cyclobutenones and o- and p-Methoxyphenol Derivatives
Zora, Metin (American Chemical Society (ACS), 1994-08-01)
Thereactionbetween1,2-diphenylcyclopro-penoneandFischercarbenecomplexeshasbeeninves-tigated.Thereactionproducedamixtureofdipheny-lacetyleneandcyclobutenones.Whena,ß-unsaturatedcarbenecomplexeswereemployed,benzannulationprod-uctsanddiphenylacetylenewereproduced.Amecha-nisminvolvingmetallacyclobutenoneformation,followedbyeithercarbeneinsertionandreductiveeliminationorfragmentationhasbeenproposed.Recently,wereportedthatcarbon—carbonbondin-sertionisthemajorreactionpathwaywhenFischercarbenecomplexesreactwith1,2-...
Dipole moments of some styrene copolymers
Küçükyavuz, Zühal; Baysal, Bahattin (American Chemical Society (ACS), 1988-7)
Dipolemomentsofpoly(styrene-co-p-chlorostyrene),poly(styrene-co-p-methoxystyrene),poly(styrene-co-4-vinylpyridine),andpoly(styrene-co-N-vinylcarbazole)copolymersweredeterminedintoluenesolutionsatdifferenttemperatures.Thesamplesweresynthesizedbyusingfree-radicalinitiators.Theeffectsofthenatureofthepolargroup,composition,andtemperatureonthedipolemomentratiowereinvestigated.Themean-squaredipolemomentperstructuralunitshowsapositivedeviationfromlinearity,inagreementwithcalculationsbyMarkbasedonrotationalisomeric...
Synthesis, characterization, and electrochemistry of tetracarbonyl(6-ferrocenyl-2,2 '-bipyridine)tungsten(0)
Edinc, Pelin; Oenal, Ahmet M.; Özkar, Saim (Elsevier BV, 2007-04-15)
6-Ferrocenyl-2,2'-bipyridine (fcbpy) was prepared by the reaction of lithiated ferrocene with bipyridine and employed as a bidentate ligand for the formation of tetracarbonyl(6-ferrocenyl-2,2'-bipyridine)tungsten(0). The labile complex pentacarbonyl[eta(2)-bis(trimethylsilyl)ethyne]tungsten(0) reacts with fcbpy in CH2Cl2 to yield the disubstitution product, W(CO)(4)(fcbpy), which was isolated as analytically pure substance and characterized by elemental analysis, IR, UV-Vis, MS, H-1 and C-13 NMR spectroscop...
Ruthenium(III) acetylacetonate: A homogeneous catalyst in the hydrolysis of sodium borohydride
Keceli, Ezgi; Özkar, Saim (Elsevier BV, 2008-05-01)
Ruthenium(ill) acetylacetonate was employed for the first time as homogeneous catalyst in the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was not reduced by sodium borohydride under the experimental conditions and remains unchanged after the catalysis. Poisoning experiments with mercury and trimethylphosphite provide compelling evidence for the fact that ruthenium(III) acetylacetonate is indeed a homogenous catalyst in the hydrolysis of sodium borohydride. Kinetics of the ruthenium(III)...
Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: experimental and modelling evidence
Zhu, Qiang; Yıldırım, Erol; Wang, Xizu; Kyaw, Aung Ko Ko; Tang, Tao; Soo, Xiang Yun Debbie; Wong, Zicong Marvin; Wu, Gang; Yang, Shuo-Wang; Xu, Jianwei (2020-06-01)
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), being the most popular conductive polymer, has been doped with various additives with the aim of improving its thermoelectric performance. Among all additives, dimethyl sulfoxide (DMSO) has been widely used for various treatments. In this work, we designed and synthesized a series of aliphatic- and aromatic-substituted sulfoxides as dopants to improve the thermoelectric properties of PEDOT:PSS. It was found that the substituents in the sul...
Citation Formats
N. NUGAY, Z. KUCUKYAVUZ, and S. KUCUKYAVUZ, “CONDUCTIVE PROPERTIES OF POLY(4-VINYLPYRIDINE) POLY(DIMETHYLSILOXANE) BLOCK-COPOLYMERS DOPED WITH TETRACYANOQUINODIMETHANE,” POLYMER, pp. 4649–4654, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67053.