Vibration suppression of an elastic beam via sliding mode control

2005-09-09
Itik, Mehmet
SALAMCİ, METİN UYMAZ
Ulker, F. Demet
This paper presents experimental results of sliding mode control (SMC) technique applied to an elastic beam. The aim of the controller is to suppress first two vibration modes of the beam. Mathematical model of the beam is a finite dimensional model obtained from the Bernoulli-Euler beam equation. As the system states are to be available in order to design the SMC, an observer has been designed to obtain the states of the system by measuring tip deflection of the beam. By using observed states of the finite dimensional model, SMC is designed and applied to the elastic beam giving thoroughly suppressed vibration modes.

Suggestions

Active vibration suppression of a flexible beam via sliding mode and H ∞ control
Itik, Mehmet; Salamci, Metin U.; Demet Ulker, F.; Yaman, Yavuz (2005-12-01)
n this study, sliding mode and H. control techniques are applied to a flexible beam in order to suppress some of the vibration modes. The beam is a clamped-free flexible structure having piezoelectric (PZT) patches as actuators and a laser displacement sensor for measuring the tip point deflection. The beam is modeled in two different ways for each control algorithm. To implement sliding mode control (SMC), Euler-Bernoulli beam model is used and a finite dimensional LTI model is formed by using assumed mode...
Motion Control of a Spatial Elastic Manipulator in the Presence of Measurement Noises
Kilicaslan, Sinan; İder, Sıtkı Kemal; Özgören, Mustafa Kemal (2021-07-01)
This paper presents a method for the end effector motion control of a spatial three-link robot having elastic second and third links including measurement noises. In the derivation of equations of motion, not to face with complex equations of motion, each link is modeled as though the links are not connected and the restrictions on the links due to connecting them by joints are written as constraint equations. After that the Lagrange multipliers are eliminated and the constraint equations at the acceleratio...
Optimal Control of a Smart Beam by Using a Luenberger Observer
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2013-06-26)
This paper presents the design of an optimal vibration control mechanism, namely an LQR controller, with a Luenberger observer for a smart beam having surface bonded piezoelectric sensors and actuators. The approach intends to suppress the vibrations of the first flexural resonance of the smart beam. The smart beam studied was a cantilever aluminium beam with eight surface bonded Lead-Zirconate-Titanate (PZT) patches in bimorph configuration. The smart beam was excited at its first resonance frequency (appr...
Sliding mode control for non-linear systems with adaptive sliding surfaces
Durmaz, Burak; Özgören, Mustafa Kemal; SALAMCİ, METİN UYMAZ (2012-02-01)
This study covers the sliding mode control design with adaptive sliding surfaces for a class of affine non-linear systems, which can be described by (x) over dot = A(x)x + B(x)u + f(x) + d(x, t). The main streamline of the study is the sliding surface design for such systems. The sliding surfaces are designed to be moving with varying slopes and offsets. The varying sliding surface parameters are determined by solving the state-dependent Riccati equations online during the control process. Thus, the sliding...
Experimental evaluation of alternative drive-mode control electronics developed for high-performance MEMS gyroscopes
ŞAHİN, EROL; Alper, S.E.; Akın, Tayfun (2011-06-09)
This paper presents the illustrative measurement results of a comprehensive study for understanding the effects of different drive-mode control electronic architectures on the overall performance of a micromachined capacitive vibratory gyroscope. Three different control electronic architectures have been implemented for generating either (a) square wave, (b) sinusoidal wave or (c) complex waveform driving signals for the gyroscope under test. Performance characterization of the gyroscope with these control ...