Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Miscibility of methylmethacrylate-co-methacrylic acid polymer with magnesium, zinc, and manganese sulfonated polystyrene ionomers
Date
2005-01-01
Author
Alkan, C
Yurtseven, N
Aras, L
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
The miscibility of methyl methacrylate-co-methacrylic acid polymer (MMA-MAA) with metal neutralized sulfonated polystyrene ionomers was investigated by viscometry, differential scanning calorimetry (DSC), and Fourier transform infrared radiation spectroscopy (FTIR) techniques. Polystyrene (PS) was sulfonated by acetic anhydride and sulfuric acid and the sulfonation degree was found to be 2.6 mole percent, and 2.6 mole percent sulfonated polystyrene was neutralized by Mg, Zn, and Mn salts. The miscibility behavior of the blends of MMA-MAA with Mg neutralized 2.6 mole% sulfonated polystyrene (2.6MgSPS), Mn neutralized 2.6mole% sulfonated polystyrene (2.6MnSPS), and Zn neutralized 2.6 mole% sulfonated polystyrene (2.6ZnSPS) was investigated by dilute solution viscometry. The results showed that 2.6MgSPS blends were miscible with MMA-MAA in all compositions, 2.6ZnSPS blends were all immiscible, and 2.6MnSPS blends were immiscible at certain compositions. Even though the DSC thermograms of samples were taken in the solid state, they showed consistency with the results of dilute solution viscometry with a few exceptions. DSC results indicated that 2.6ZnSPS was immiscible with MMA-MAA as 2.6MnSPS and 2.6ZnSPS blends were immiscible at certain compositions. FTIR studies of miscible and immiscible blends revealed the existence of specific interactions between carbonyl oxygen of MMA-MAA copolymer and neutralizing cation of the sulfonated polystyrene.
Subject Keywords
Methylmethacrylate-methacrylic acid polymer
,
Sulfonated polystyrene ionomers
,
Viscometry
,
Compatibility
URI
https://hdl.handle.net/11511/67198
Journal
TURKISH JOURNAL OF CHEMISTRY
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Miscibility of polystyrene-based lonomers with poly(2,6-dibromo-1,4-phenylene oxide)
Alkan, C; Aras, L (2001-12-27)
Blends of poly(2,6-dibromo-1,4-phenylene oxide) (PDBrPO) with 4.8 mol % sulfonated polystyrene (4.8SPS), Na-neutralized 1.7 mol % sulfonated polystyrene (Na1.7SPS), Mn-neutralized 3.8 mol % sulfonated polystyrene (Mn3.8SPS), and Zn-neutralized 3.8 mol % sulfonated polystyrene (Zn3.8SPS) ionomers were investigated for their miscibilities with varying compositions by dilute solution viscometry (DSV), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Deltab, mu, and alpha paramet...
Indium tin oxide nanoparticles as anode for light-emitting diodes
Çırpan, Ali (Wiley, 2006-02-15)
Thin films of indium tin oxide (ITO) nanoparticles have been investigated as anode materials for polymer light-emitting diodes. A luminance efficiency (0.13 cd/ A), higher than that (0.09 cd/A) obtained in a control devices fabricated on conventional commercial ITO anodes were found. The thin films were made by spin coating of a suspension followed by annealing. The ITO nartoparticle films have a stable sheet resistance of 200 ohm/sq, and an optical transmittance greater than 86% over the range of 400-1000 ...
Carboligation reactivity of benzaldehyde lyase (BAL, EC 4.1.2.38) covalently attached to magnetic nanoparticles
TURAL, Bilsen; Turan, Ilke Simsek; TURAL, SERVET; Celebi, Bulent; Demir, Ayhan Sıtkı (Elsevier BV, 2013-03-31)
Epoxy-functionalized Fe3O4-SiO2 core-shell magnetic nanoparticles (epoxy-M-support) were prepared by modification with glycidyloxypropyltrimethoxysilane (GPTMS) and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR) methods. Pure histidine-tagged recombinant benzaldehydelyase (BAL, EC 4.1.238) was efficiently immobilized onto the epoxy-M-support with covalent binding. An immobilized BAL epoxy-M-support system was tested to cat...
Annealing improvement on the localized states of plasma grown boron nitride film assessed through admittance measurements
ÖZDEMİR, Orhan; Anutgan, Mustafa; Aliyeva-Anutgan, Tamila; Atilgan, Ismail; Katircioglu, Bayram (Elsevier BV, 2009-05-05)
Boron nitride (BN) thin film was grown by plasma enhanced chemical vapor deposition (PECVD) technique and was investigated by UV-Visible transmission, Fourier transform infrared (FTIR) and ac conductance spectroscopies. Mainly the density of electronic localized states (D-it) at BN/Si interface was obtained by continuum and statistical models of ac conductance through an MIS structure (Al/BN film/Si). The origins of the electronic defects have been outlined and discussed within the frame of a nitrogen defic...
Highly Crystalline Poly(L-lactic acid) Porous Films Prepared with CO2-philic, Hybrid, Liquid Cell Nucleators
Culhacioglu, Yagmur; Hasırcı, Nesrin; Dilek Hacıhabiboğlu, Çerağ (2019-12-18)
Supercritical CO2 (scCO(2)) foaming of poly(L-lactic acid) composite films with liquid polyhedral oligomeric silsesquioxanes (PLLA-POSS) was carried out to obtain polymer matrices for drug delivery applications. Highly crystalline (>45%) PLLA generally requires high supercritical processing (saturation) temperatures close to its melting temperature (similar to 450 K) and pressures about or over 20 MPa for foaming with scCO(2). To decrease the saturation temperature and obtain ductile PLLA films with uniform...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Alkan, N. Yurtseven, and L. Aras, “Miscibility of methylmethacrylate-co-methacrylic acid polymer with magnesium, zinc, and manganese sulfonated polystyrene ionomers,”
TURKISH JOURNAL OF CHEMISTRY
, pp. 497–506, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67198.