Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production
Date
2012-11-01
Author
Gokce, Abdulmecit
Ozturk, Yavuz
Çakar, Zeynep Petek
Yucel, Meral
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Cite This
Hydrogen (H-2) is a promising alternative energy carrier which can be produced biologically. Rhodobacter capsulatus, a non-sulfur purple photosynthetic bacterium, can produce H-2 under nitrogen-limited, photoheterotrophic conditions by using reduced carbon sources such as simple organic acids. Outdoor closed photobioreactors; used for biological H-2 production are located under direct sunlight, as a result; bioreactors are exposed to temperature fluctuations during day time. In this study to overcome this problem, temperature-resistant mutants (up to 42 degrees C) of R. capsulatus were generated in this study by a directed evolution approach. Eleven mutant strains of R. capsulatus DSM 1710 were obtained by initial ethyl methane sulfonate (EMS) mutagenesis of the wild-type strain, followed by batch selection at gradually increasing temperatures up to 42 degrees C under respiratory conditions. The genetic stability of the mutants was tested and eight were genetically stable. Moreover, H-2 production of mutant strains was analyzed; five mutants produced higher amounts of H-2 when compared to the DSM 1710 wild-type strain and three mutants produced less H-2 by volume. The highest H-2- producing mutant (B41) produced 24% more H-2 compared to wild type, and the mutant with lowest H-2-production capacity (A52) generated 7% less H-2 compared to the wild type. These results indicated that heat resistance of R. capsulatus can be improved by directed evolution, which is a useful tool to improve industrially important microbial properties. To understand molecular changes that confer high temperature-resistance and high hydrogen production capacity to these mutants, detailed transcriptomic and proteomic analyses would be necessary. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/67459
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2012.02.169
Collections
Department of Biology, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Gokce, Y. Ozturk, Z. P. Çakar, and M. Yucel, “Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, vol. 37, no. 21, pp. 16466–16472, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67459.