Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications

Boran, Asli
Erkan, Serdar
Eroğlu, İnci
Being a boron-based compound, sodium borohydride, NaBH4, is a convenient hydrogen storage material for applications like unmanned air vehicles. There are several concerns behind commercialization of hydrogen gas generator by NaBH4 hydrolysis systems. This study aims to contribute to the solution of the problems of NaBH4 hydrolysis system in three main ways. First, the usage of solid state NaBH4 enables to increase the durability and the gravimetric H-2 storage capacity of the system in order to meet US DOE targets. Second, solid NaBH4 usage decreases the system's weight since it does not require a separate fuel storage tank, which is very important for portable, on demand applications. Finally, the system's cost is decreased by using an accessible and effective non-precious catalyst such as ferric chloride, FeCl3. The maximum hydrogen generation rate obtained was 2.6 L/min and the yield was 2 L H-2/g NaBH4 with an efficiency of 76% at its most promising condition. Moreover, the novel solid NaBH4 hydrogen gas generator developed in the present work was integrated into a proton exchange membrane fuel cell and tested at the optimum operating conditions. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.


Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on Pd-activated TiO2 by electroless deposition
Rakap, Murat; Kalu, Egwu Eric; Özkar, Saim (Elsevier BV, 2011-01-01)
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. By using electroless deposition method, we have prepared the Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) that can effectively promote the hydrogen release from ammonia-borane aqueous solution. Co-Ni-P/Pd-TiO2 catalysts are stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. ...
Ammonia borane as hydrogen storage materials
AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2018-10-04)
Ammonia borane is an appropriate solid hydrogen storage material because of its high hydrogen content of 19.6% wt., high stability under ambient conditions, nontoxicity, and high solubility in common solvents. Hydrolysis of ammonia borane appears to be the most efficient way of releasing hydrogen stored in it. Since ammonia borane is relatively stable against hydrolysis in aqueous solution, its hydrolytic dehydrogenation can be achieved at an appreciable rate only in the presence of suitable catalyst at roo...
Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production
Gokce, Abdulmecit; Ozturk, Yavuz; Çakar, Zeynep Petek; Yucel, Meral (Elsevier BV, 2012-11-01)
Hydrogen (H-2) is a promising alternative energy carrier which can be produced biologically. Rhodobacter capsulatus, a non-sulfur purple photosynthetic bacterium, can produce H-2 under nitrogen-limited, photoheterotrophic conditions by using reduced carbon sources such as simple organic acids. Outdoor closed photobioreactors; used for biological H-2 production are located under direct sunlight, as a result; bioreactors are exposed to temperature fluctuations during day time. In this study to overcome this p...
Transition metal nanoparticle catalysts in releasing hydrogen from the methanolysis of ammonia borane
Özkar, Saim (Elsevier BV, 2020-03-13)
Ammonia borane (H3N center dot BH3, AB) is one of the promising hydrogen storage materials due to high hydrogen storage capacity (19.6% wt), high stability in solid state as well as in solution and nontoxicity. The methanolysis of AB is an alternative way of releasing H-2 due to many advantages over the hydrolysis such as having high stability against self releasing hydrogen gas. Here we review the reports on using various noble or non-noble metal(0) catalysts for H-2 release from the methanolysis of AB. Ni...
Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications
Köse, Kadir Özgün; Aydınol, Mehmet Kadri (Elsevier BV, 2018-10-04)
Development of biomass based activated carbon materials for electrical double layer capacitor (EDLC) usage has gained attention as a result of requesting efficient and low cost energy storage device production. In this study, pine cone based activated carbons were produced with a combined chemical and physical activation route. ZnCl2 and CO2 were used for chemical and physical activation of the material, respectively. Activation parameters are adjusted to give different chemical and textural characteristics...
Citation Formats
A. Boran, S. Erkan, and İ. Eroğlu, “Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 18915–18926, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51687.