Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions catalyzed by a mixture of [RuCl2Cp*(PPh3)] and magnesium
Date
2007-01-01
Author
Thommes, Katrin
Icli, Burcak
Scopelliti, Rosario
Severin, Kay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
A new catalytic procedure for atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions is described. The combination of the ruthenium(III) complex [RuCl2-Cp*(PPh3)] (Cp*: pentamethylcyclopentadienyl) with magnesium allows these reactions to be performed under mild conditions with high efficiency. In most cases, the catalyst concentrations required are significantly lower than those used in previously reported procedures. It is suggested that magnesium acts as a reducing agent that generates and regenerates the catalytically active ruthenium(II) species. ne precatalyst [RuCl2Cp*(PPh3)] has been analyzed by X-ray crystallography.
Subject Keywords
General Chemistry
URI
https://hdl.handle.net/11511/67487
Journal
CHEMISTRY-A EUROPEAN JOURNAL
DOI
https://doi.org/10.1002/chem.200700442
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Atom transfer rearrangement radical polymerization of diammine-bis(2,4,6-trihalophenolato)copper(II) complexes in the solid state
Goekagac, Guelsuen; Sonsuz, Muammer; Sen, Fatih; Kisakuerek, Duygu (Walter de Gruyter GmbH, 2006-10-01)
The synthesis of the poly(dichloro- or dibromophenylene oxide)s was achieved by the thermal decomposition of diammine-bis(2,4,6-trihalophenolato)copper(II) complexes in the solid state by atom transfer rearrangement radical polymerization. The thermal decomposition was performed either at different temperature ranges, 110-250 degrees C, for 3 h, or at the maximum conversion temperature for different time intervals, 3-48 h. Maximum yields of polymers were obtained at 190 degrees C and 3 h. The polymers were ...
Self-condensation reactions of acyl phosphonates: synthesis of tertiary O-protected alpha-hydroxyphosphonates
EYMUR, SERKAN; Gollu, Mehmet; Demir, Ayhan Sıtkı (The Scientific and Technological Research Council of Turkey, 2014-01-01)
The self-condensation reaction of benzoyl dialkyl phosphonates was developed using cyanide ion as catalyst, affording versatile tertiary O-protected alpha-hydroxy phosphonates in moderate yield.
Thermal catalytic hydrosilylation of conjugated dienes with triethylsilane in the presence of tricarbonyl(o-xylene)metal (metal = Cr, Mo, W) complexes
Kayran, C; Rouzi, P (Walter de Gruyter GmbH, 2001-11-01)
The thermal catalytic hydrosilylation of 1,3-butadiene (1), trans-2-methyl-1, 3-pentadiene (2), 2,3-dimethyl-1,3-butadiene (3), and isoprene (4), with triethylsilane were studied in the presence of M(CO)(3) (o-xylene) (M = Cr, Mo, W) complexes in polar and nonpolar solvents such as tetrahydrofuran, hexane and toluene. Mo(CO)(3) (o-xylene) was found to be the only active catalyst for the hydrosilylation of 3 with triethylsilane, which gave 1-triethylsilyl-2,3-dimethyl-2-butene (3a), as hydrosilylated product...
Economic synthesis of quinaldinium fluorochromate(VI), (QnFC), and solvent-free periodic acid oxidation of alcohols catalyzed by QnFC
Özdemir, Melek (The Scientific and Technological Research Council of Turkey, 2014-01-01)
A 1: 1: 1 stoichiometric reaction between CrO3, aqueous HF, and quinaldine affords orange crystalline quinaldinium fluorochromate(VI) (QnFC) (C10H9NH[CrO3F]) in 99.4% isolated yield. A highly efficient, simple, chemoselective, and environmentally benign procedure for QnFC (3 mol%) catalyzed oxidation of primary and secondary alcohols to aldehydes and ketones using 1.1 equiv of H5IO6 under solvent-free conditions is described.
Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C-3 symmetry, lattice size-matching binding model
Finke, RG; Özkar, Saim (Elsevier BV, 2004-01-01)
The recent discovery of an anion efficacy series for the formation and stabilization of transition-metal Ir(0)(n) nanoclusters, specifically P2W15Nb3O629- similar to SiW9Nb3O407- > C6H5O73- > [-CH2CH(CO2-)-](n)(n-) similar to OAc- similar to P3O93- similar to Cl- similar to OH--that is, polyoxoanions > citrate(3-) > other commonly employed nanocluster stabilizing anions, raises the question of what are the underlying factors behind this preferred order of stabilizers? A brief discussion of three relevant na...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Thommes, B. Icli, R. Scopelliti, and K. Severin, “Atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions catalyzed by a mixture of [RuCl2Cp*(PPh3)] and magnesium,”
CHEMISTRY-A EUROPEAN JOURNAL
, pp. 6899–6907, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67487.