Bed shear stress and sediment entrainment potential for breaking of internal solitary waves

2020-01-01
la Forgia, Giovanni
Tokyay, Talia
Adduce, Claudia
Constantinescu, George
We investigate the interaction of strongly non linear internal solitary waves (ISWs) with boundaries having different slopes by means of high-resolution 3D large Eddy Simulations (LES). Releasing a volume of fresh water into a stratified ambient fluid, three different breaking mechanisms are produced: plunging, collapsing and surging breakers. The different shoaling dynamics affect the ISW evolution over the sloping boundary, inducing different effects on the bottom. In order to investigate the effects of the ISW breaking on the inclined surface, we calculate the bed shear stress and estimate the local flux of sediments entrained from the bed. We analyze the relationship between the breaking criteria and the related effects on the sloping surface. Although plunging breakers are expected to induce significant effects within the fluid, causing larger amount of mixing and fluid entrainment, the effects on the bottom are totally opposite. The collapsing breaker mechanism, indeed, generates boundary layer separation, which in turn induces whirling instabilities. Results show that the ISW interaction with the inclined surface occurs in its close proximity for collapsing breaker mechanism, which explains why the largest bed shear stresses and sediment re-suspension are predicted in the simulation where a collapsing breaker mechanism is observed.
ADVANCES IN WATER RESOURCES

Suggestions

Channel width, bedform length and turbulence: numerical investigation of flow dynamics over laboratory-scale pool-riffle sequences
Tokyay, Talia; Sinha, Sumit (Springer Science and Business Media LLC, 2020-08-01)
Spatial dimensions of bedforms relative to the flow depth are of great interest for both engineers and geoscientists, and continue to be an active area of research. These morphological features are of significant consequence for critical hydrodynamic parameters, which in turn has an impact on sediment and solute transport through the river system. In this study, we present results from three-dimensional large eddy simulation of flows over such bedforms in a straight channel. Rigid three-dimensional pool-rif...
Point-scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey
Sensoy, A; Sorman, AA; Tekeli, AE; Sorman, AU; Garen, DC (Wiley, 2006-03-15)
Since snowmelt runoff is important in the mountainous parts of the world, substantial efforts have been made to develop snowmelt models with many different levels of complexity to simulate the processes at the ground (soil-vegetation), within the snow, and at the interface with the atmosphere. Snow modifies the exchange of energy between the land surface and atmosphere and significantly affects the distribution of heating in the atmosphere by changing the surface albedo and regulating turbulent heat and mom...
The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation
Constantinescu, George; Köken, Mete; Zeng, Jie (American Geophysical Union (AGU), 2011-05-12)
[1] Results of a detached eddy simulation (DES) are used to better understand the effects of the mean flow three-dimensionality and secondary currents on turbulence and boundary shear stresses and the mechanisms through which the momentum and Reynolds stresses are redistributed in a strongly curved 193 degrees bend with fixed deformed bed corresponding to the later stages of the erosion and sedimentation process. The ratio between the radius of curvature of the curved reach and the channel width is close to...
An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process
Köken, Mete (American Geophysical Union (AGU), 2008-08-05)
The present study investigates the flow physics and the role played by the main coherent structures in the scouring processes around a vertical spur dike in a straight channel at conditions corresponding to the start (flat bed) of the scouring process. Large eddy simulation (LES) is performed at a relatively low channel Reynolds number (Re = 18,000), in the range where most flume studies with clear water scour conditions are conducted. Similar to these studies, the incoming flow is fully turbulent and conta...
Flow and turbulence structure around abutments with sloped sidewalls
Köken, Mete (American Society of Civil Engineers (ASCE), 2014-01-01)
Results of eddy-resolving numerical simulations are used to investigate flow and turbulence structure around an isolated abutment with sloped sidewalls at conditions corresponding to the start (flatbed) and the end (equilibrium bathymetry) of the scour process. Besides cases where the abutment is not protected against scour using riprap, the paper considers cases where a riprap apron of constant width is present around the base of the abutment at the start of the scour process. The paper also discusses the ...
Citation Formats
G. la Forgia, T. Tokyay, C. Adduce, and G. Constantinescu, “Bed shear stress and sediment entrainment potential for breaking of internal solitary waves,” ADVANCES IN WATER RESOURCES, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67502.