SIMULATION AND OPTIMIZATION OF 3 EXISTING ETHYLBENZENE DEHYDROGENATION REACTORS IN SERIES

1990-01-01
ONAL, I
YALCIN, N
UYGUN, E
OZTURK, H
A computer model was developed to simulate the performace of three commercial reactors in series for dehydrogenation of ethylbenzene to styrene. The model can be used to predict the performance of dehydrogenation catalysts in the commercial reactors. In the model program, flow of the reactant stream through the catalyst bed is treated as one-dimensional plug flow. The kinetic rate parameters were obtained by using the Conjugate Direction method as a multivariable search technique so as to minimize the sum of squares of differences between predicted and actual conversions. The predicted conversions were found by numerically solving the differential equations for pressure gradient, energy, and material balances for the main reaction and five side reactions. The results indicate reasonably good simulation of the new plant data as a test of the model. Various catalyst and reactor combination schemes will later be used to optimize overall plant performance by means of computer model developed.
MATHEMATICAL AND COMPUTER MODELLING

Suggestions

Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at root s=7 TeV
Khachatryan, V.; et. al. (2011-02-01)
The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E-T(Gamma) in pp collisions at root s 7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 pb(-1). Photons are required to have a pseudorapidity vertical bar eta(gamma)vertical bar 21 GeV, covering the kinematic region 0.006 < x(T) < 0.086. The measured cross section is found to be in agreem...
Simulations on glow discharge: development and validation of one-dimensional kinetic model by particle in cell/monte carlo collision method
Tiryaki, Özgecan; Çakır, Serhat; Department of Physics (2019)
Numerical codes for glow discharge plasma simulations were developed by using Particle in Cell/Monte Carlo Collision (PIC/MCC) method. The model is one-dimensional in coordinate space and three-dimensional in velocity space (1d3v). A modification of Direct Simulation Monte Carlo (DSMC) method known as null-collision method was used for particle collisions. MPI and sub-cycling were used for speed up. The code was validated using benchmarks for capacitively coupled helium discharges and tested with three-dime...
Simulation of inelastic cyclic buckling behavior of steel box sections
Dicleli, Murat (Elsevier BV, 2007-4)
In this study, a nonlinear structural model is developed to simulate the cyclic axial force-deformation behavior of steel braces including their buckling behavior using the commercially available nonlinear finite element based software ADINA. The nonlinear cyclic axial force-deformation simulation is done for braces with box sections. However, the structural model and simulation techniques described in this study may be applicable to braces with various section types using other commercially available struc...
NUMERICAL INVESTIGATION OF BUBBLING FLUIDIZED BED TO BE USED AS THERMAL ENERGY STORAGE INTEGRATED TO HIGH-TEMPERATURE CONCENTRATED SOLAR POWER
HİÇDURMAZ, SERDAR; Tarı, İlker (Begell House, 2018-01-01)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analyzed with the help of ANSYS Fluent 17.0. Hydrodynamics of the bubbling fluidized sand bed of 0.28 m × 1 m × 0.025 m dimensions to be used as a direct contact heat exchanger is modeled and validated. Geldart B-type particles with diameter of 275 micrometers and density of 2500 kg/m3 are used in modeling of bubbling fluidized sand bed. A Syamlal−O'Brien drag model with restitution coefficient of 0.99 ...
On the accuracy and reliability of different fluid models of the direct current glow discharge
Rafatov, İsmail; KUDRYAVTSEV, A. A. (2012-03-01)
We developed and tested 2D "extended fluid model" of a dc glow discharge using COMSOL MULTIPHYSICS software and implemented two different approaches. First, assembling the model from COMSOL's general form pde's and, second, using COMSOL's built-in Plasma Module. The discharge models are based on the fluid description of ions and excited neutral species and use drift-diffusion approximation for the particle fluxes. The electron transport as well as the rates of electron-induced plasma-chemical reactions are ...
Citation Formats
I. ONAL, N. YALCIN, E. UYGUN, and H. OZTURK, “SIMULATION AND OPTIMIZATION OF 3 EXISTING ETHYLBENZENE DEHYDROGENATION REACTORS IN SERIES,” MATHEMATICAL AND COMPUTER MODELLING, pp. 263–267, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67543.