Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
NUMERICAL INVESTIGATION OF BUBBLING FLUIDIZED BED TO BE USED AS THERMAL ENERGY STORAGE INTEGRATED TO HIGH-TEMPERATURE CONCENTRATED SOLAR POWER
Download
index.pdf
Date
2018-01-01
Author
HİÇDURMAZ, SERDAR
Tarı, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
278
views
0
downloads
Cite This
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analyzed with the help of ANSYS Fluent 17.0. Hydrodynamics of the bubbling fluidized sand bed of 0.28 m × 1 m × 0.025 m dimensions to be used as a direct contact heat exchanger is modeled and validated. Geldart B-type particles with diameter of 275 micrometers and density of 2500 kg/m3 are used in modeling of bubbling fluidized sand bed. A Syamlal−O'Brien drag model with restitution coefficient of 0.99 and specularity coefficient of 0.1 predicts the reported experimental data well in terms of bed expansion ratio, temporal voidage profile, and pressure drop across the bed. According to thermal model results, a linear relation between interphase heat transfer coefficient and bed temperature is observed. A number of analyzed units are proposed as a particle-based storage system for the Ivanpah Solar Power Plant. It is shown that the system using an air Brayton cycle with thermal efficiency of 0.264 can produce 178 MW electricity for 11.22 h with 26,304 metric tons of silica sand that is required for daily storage.
Subject Keywords
General Engineering
,
Modelling and Simulation
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/42387
Journal
Multiphase Science and Technology
DOI
https://doi.org/10.1615/multscientechn.2018024729
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Numerical investigation of bubbling fluidized bed to be used as high temperature thermal energy storage
Hiçdurmaz, Serdar; Tarı, İlker; Department of Mechanical Engineering (2017)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analysed with the help of a commercial Computational Fluid Dynamics tool. Hydrodynamics of the bubbling fluidized sand bed of which dimensions are 0.28 m x 1 m x 0.025 m to be used as direct contact heat exchanger are modelled and validated. Geldart B type particles with diameter of 275 micron and density of 2500 kg/m3 are used in modelling of bubbling fludized sand bed. Syamlal O’Brien drag model with ...
EXPERIMENTAL ANALYSIS AND TRANSIENT SIMULATION OF HEAT TRANSFER INSIDE THE FINNED TUBE ADSORBENT BED OF A THERMAL WAVE CYCLE
ÇAĞLAR, AHMET; Yamali, Cemil (Begell House, 2019-01-01)
Heat transfer enhancement inside the adsorbent bed of a thermal wave adsorption cooling cycle is investigated both experimentally and theoretically. Various adsorbent materials are tested using a finned tube adsorbent bed for the thermal wave cycle. The mathematical model is well defined, including a 2-D coupled heat and mass transfer analysis. This study presents the effects of heat transfer fluid velocity, regeneration temperature, condenser pressure, and particle diameter on the heat transfer enhancement...
Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; Akgol, Oguzhan; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2016-08-10)
The proposed study presents an electromagnetic (EM) energy harvesting and density sensor application based on a perfect metamaterial absorber (MA) in microwave frequency regime. In order to verify the absorption behavior of the structure, its absorption behavior is experimentally tested along with the energy harvesting and sensing abilities. The absorption value is experimentally found 0.9 at the resonance frequency of 4.75 GHz. In order to harvest the EM energy, chips resistors are used. In addition, the s...
Optimisation and design of PV modules for the application on bus roof-top and system integration for solar cooling
DEMİRCİOĞLU, Olgu; ES, FIRAT; Çiftpınar, Emine Hande; ZEYBEK, Akin; TUNCER, Cahit; Turan, Raşit (2015-09-18)
In this study, an external electrical cooling unit powered by PV modules was installed on the roof‐top of a bus to keep cooled interior atmosphere at a certain temperature level during the journey breaks. All solar cells used in this project were fabricated by Center for Solar Energy Research and Applications (GUNAM) and; then, integrated onto a bus roof together with MAN Turkey A.Ş. For integration of PV modules onto roof of bus, a reliable and commercially applicable method has been developed. Following i...
Simulation of dissolution of silicon in an indium solution by spectral methods
Coskun, AU; Yener, Y; Arinc, F (IOP Publishing, 2002-09-01)
The results of a numerical simulation of natural convection due to concentration gradients during dissolution of silicon in an indium solution in a horizontal substrate-solution-substrate system are presented. The Chebyshev-Tau spectral method has been used for the simulations. The results are in very good agreement with the experimental data available in the literature. It is concluded that the discrepancies in the dissolution depths between the previous simulations and experimental data, especially at the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. HİÇDURMAZ and İ. Tarı, “NUMERICAL INVESTIGATION OF BUBBLING FLUIDIZED BED TO BE USED AS THERMAL ENERGY STORAGE INTEGRATED TO HIGH-TEMPERATURE CONCENTRATED SOLAR POWER,”
Multiphase Science and Technology
, pp. 99–120, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42387.