Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Solution to the Adhesion Problem of Oxide Thin Films on Zinc Selenide Optical Substrates
Date
2016-05-13
Author
Cosar, M. B.
Aydogdu, G. H.
Batman, H.
Ozhan, A. E. S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Zinc selenide optical substrates have high transparency within the 0.5- to 14.0-mu m wavelength range. This makes them an attractive candidate for multiband imaging applications in optical components. In order to minimize reflection loss in visible, near-infrared, and mid-infrared applications, zinc selenide lenses are coated with multi-layered oxide thin films by physical vapor deposition method or ion beam deposition. In this study, a four-layer anti-reflective filter at 1.064 gm and between 3.6 and 4.9 gm is applied to zinc selenide using an ion beam deposition system. The filter is used for a dual-beam optical application. The filter is composed of metal oxide layers that have an adhesion problem on zinc selenide. In order to solve this adhesion problem they were heat-treated at 300 degrees C for varying amounts of time prior to metal oxide coating. Treated samples were characterized in terms of their roughness, contact angle, morphology, refractive index, transparency, crystallography and chemical composition. Results show that it is possible to manufacture durable oxide thin film coatings on zinc selenide, by using a well-designed pre-treatment processes.
Subject Keywords
ZNSE
,
SURFACE
URI
https://hdl.handle.net/11511/67575
DOI
https://doi.org/10.14332/svc16.proc.0061
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar