A Solution to the Adhesion Problem of Oxide Thin Films on Zinc Selenide Optical Substrates

2016-05-13
Cosar, M. B.
Aydogdu, G. H.
Batman, H.
Ozhan, A. E. S.
Zinc selenide optical substrates have high transparency within the 0.5- to 14.0-mu m wavelength range. This makes them an attractive candidate for multiband imaging applications in optical components. In order to minimize reflection loss in visible, near-infrared, and mid-infrared applications, zinc selenide lenses are coated with multi-layered oxide thin films by physical vapor deposition method or ion beam deposition. In this study, a four-layer anti-reflective filter at 1.064 gm and between 3.6 and 4.9 gm is applied to zinc selenide using an ion beam deposition system. The filter is used for a dual-beam optical application. The filter is composed of metal oxide layers that have an adhesion problem on zinc selenide. In order to solve this adhesion problem they were heat-treated at 300 degrees C for varying amounts of time prior to metal oxide coating. Treated samples were characterized in terms of their roughness, contact angle, morphology, refractive index, transparency, crystallography and chemical composition. Results show that it is possible to manufacture durable oxide thin film coatings on zinc selenide, by using a well-designed pre-treatment processes.
59th Annual Technical Conference of the Society-of-Vacuum-Coaters (SVC)

Suggestions

The use of gold and silver nanoparticles for surface enhanced fluorescence (SEF) of Dyes
Öztürk, Tacettin; Volkan, Mürvet; Department of Chemistry (2010)
This study focuses on preparing surface enhanced fluorescence (SEF) substrates for use in the enhancement of the emission signal of rhodamine B and fluorescein dyes. Fluorescence spectroscopy has been widely utilized owing to its high sensitivity. SEF is a process where the interactions of fluorophores with the localized surface plasmons of metal nanoparticles results in fluorescence enhancement, increased photostability and rates of system radiative decay which leads to a decreased lifetime. One of the mos...
Enhanced peak separation in XPS with external biasing
Ertaş, Gülay; Suzer, S (Elsevier BV, 2005-08-15)
We have demonstrated that the An 4f peaks of the capped gold nanoparticles deposited on a SiO2 (20 nm)/Si substrate can be separated form the An 4f peaks of a gold metal strip, in contact with the same sample, by application of an external voltage bias to the sample rod while recording the XPS spectra. The external bias controls the flow of low-energy electrons falling on to the sample which in-turn controls the extent of the differential charging of the oxide layer leading to shifts in the binding energy o...
On the profile of frequency dependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures
Parlaktuerk, F.; Altindal, S.; Tataroglu, A.; Parlak, Mehmet; AGASİEV, AHMED (2008-01-01)
The frequency dependent capacitance-voltage (C-V) and conductance-voltage (G/omega-V) characteristics of the metal-ferroclectric-insulator-semiconductor (Au/Bi4Ti3O12/SiO2/n-Si) structures (MFIS) were investigated by considering series resistance (R-s) and surface state effects in the frequency range of 1 kHz-5 MHz. The experimental C-V-f and G/omega-V-f characteristics of MFIS structures show fairly large frequency dispersion especially at low frequencies due to R-s and N-ss. In addition, the high frequenc...
A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
Two dimensional modeling of electromagnetic radiation and scattering by spectral element method
Mahariq, İbrahim; Tarman, Işık Hakan; Kuzuoğlu, Mustafa; Department of Engineering Sciences (2014)
In this thesis, the spectral element method is utilized in numerical modeling of two-dimensional, frequency-domain electromagnetic scattering and radiation problems. We perform domain truncation by the well-known perfectly matched layer (PML) and provide the corresponding formulation. The attenuation factor associated with the PML formulation is optimized so that the best accuracy is achieved for a wide range of Gauss- Legendre -Lobatto grids per wavelength. The optimality of the provided attenuation factor...
Citation Formats
M. B. Cosar, G. H. Aydogdu, H. Batman, and A. E. S. Ozhan, “A Solution to the Adhesion Problem of Oxide Thin Films on Zinc Selenide Optical Substrates,” Indianapolis, IN, 2016, p. 284, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67575.