Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile Targets' Monitoring

2020-01-01
Al-Turjman, Fadi
Zahmatkesh, Hadi
Al-Oqily, Ibrhaim
Daboul, Reda
In the recent decade, drones or Unmanned Aerial Vehicles (UAVs) are getting increasing attention by both industry and academia. Due to the support of advanced technologies, they might be soon an integral part of any smart-cities related project. In this paper, we propose a cost-effective framework related to the optimal placement of drones in order to monitor a set of static and/or dynamic targets in the IoT era. The main objective of this study is to minimize the total number of drones required to monitor an environment while providing the maximum coverage, which in turn leads to significant reduction in cost. Our simulation results show that by increasing the battery capacity of the drones, the drones' visibility range would also increase and thus, the number of drones would be reduced. Moreover, when the targets are sparsely distributed across a large number of different regions, a further increase to the targets does not require an increase in the number of drones needed to monitor them.
COMPUTER COMMUNICATIONS

Suggestions

UAVs assessment in software-defined IoT networks: An overview
Al-Turjman, Fadi; Abujubbeh, Mohammad; Malekloo, Arman; Mostarda, Leonardo (Elsevier BV, 2020-01-15)
The technological advancements in the ubiquitous IoT era and the ever-growing desire of communities to enforce smart cities with security and safety of user data as their priority, mini Unmanned Aerial Vehicles (UAVs), or drones, are perceived as a tool for raising living standards by meeting the requirements of societies. Traditionally in UAV communication links, meshed ad hoc networks were among the first options of connectivity. However, the increased demand for deploying multi-UAV networks necessitates ...
End-to-end networks for detection and tracking of micro unmanned aerial vehicles
Aker, Cemal; Kalkan, Sinan; Department of Computer Engineering (2018)
As the number of micro unmanned aerial vehicles (mUAV) increases, several threats arise. Hence, there is a need for a system that can detect and track them. In this thesis, an object detection model based on convolutional neural networks for mUAV detection, and a novel end-to-end object tracking architecture are proposed. To solve the scarce data problem for training the detection network, an algorithm for creating an extensive artificial dataset by combining background-subtracted real images is proposed. I...
How many sensors for an acceptable breach detection probability?
Onur, Ertan; Delic, H (Elsevier BV, 2006-01-10)
Determining the required number of sensors to be deployed is a critical decision for surveillance wireless sensor networks. In this paper, we discuss the trade-off between the number of sensors and the breach detection probability considering the effects of sensor parameters. We present the weakest breach path problem formulation and provide a solution by utilizing the Dijkstra's shortest path algorithm. We propose a method to determine the required number of sensors to be deployed and to gain insight about...
Numerical and experimental analysis of a piezoelectric flat plate in flapping motion
Harputlu, Özgür; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2014)
The technology of unmanned aerial vehicles (UAV) has a rapid improvement and their use is increasing day by day for military and civilian missions. Developments in production technology enable the fabrication of micro aerial vehicles. Flapping wing systems have an important place among UAVs. These vehicles are superior to fixed wing aircrafts with their high maneuverability and hover capabilities and they can successfully perform many missions in which the fixed aircrafts are insufficient. Developments in m...
Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours
Onur, Ertan; Delic, Hakan; Akarun, Lale (Elsevier BV, 2010-02-01)
For surveillance applications of wireless sensor networks, analysis of sensing coverage and quality of sensing is crucial. For rough terrains where obstacles block the sensing capability, region-based approaches must be employed to determine the sensing quality. In this paper, we present a method to determine the breach paths and the deployment quality defined as the minimum of the maximum detection probabilities on the breach paths in the presence of obstacles. We propose the utilization of watershed segme...
Citation Formats
F. Al-Turjman, H. Zahmatkesh, I. Al-Oqily, and R. Daboul, “Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile Targets’ Monitoring,” COMPUTER COMMUNICATIONS, pp. 27–35, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67787.